926 resultados para temporary habitats


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aedes albifasciatus is a floodwater mosquito that breeds in temporary waters. This semi-domestic species, widely distributed in Argentina, is a competent vector of the western equine encephalitis. The present study was carried out in two rain pools of the city of Buenos Aires, from April 1998 through March 1999. Samples were taken twice a week during the cold season and daily during the warmer months, starting from October. Immature mosquitoes were collected with a dipper, being the number of dippers proportional to the flooded area. The estimated rainfall thresholds to initiate cohorts of Ae. albifasciatus were: 16-17 mm in the fall-winter period, 25 mm in the spring, and 30 mm in the summer. The development time of the different cohorts and the mean air temperature of their respective periods were estimated in all seasons, ranging from six days (at 24ºC) to 32 days (at 13ºC). The equation that best expresses the relationship between development time and mean air temperature is dt =166,27.e-0,1435.T (R²=0,92). Significantly shorter development times were recorded for larvae of the first three stages as compared to the fourth larval stage and pupae.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-compatible hermaphroditic organisms that mix self-fertilization and outcrossing are of great interest for investigating the evolution of mating systems. We investigate the evolution of selfing in Lymnaea truncatula, a self-compatible hermaphroditic freshwater snail. We first analyze the consequences of selfing in terms of genetic variability within and among populations and then investigate how these consequences along with the species ecology (harshness of the habitat and parasitism) might govern the evolution of selfing. Snails from 13 localities (classified as temporary or permanent depending on their water availability) were sampled in western Switzerland and genotyped for seven microsatellite loci. F(IS) (estimated on adults) and progeny array analyses (on hatchlings) provided similar selfing rate estimates of 80%. Populations presented a low polymorphism and were highly differentiated (F(ST) = 0.58). Although the reproductive assurance hypothesis would predict higher selfing rate in temporary populations, no difference in selfing level was observed between temporary and permanent populations. However, allelic richness and gene diversity declined in temporary habitats, presumably reflecting drift. Infection levels varied but were not simply related to either estimated population selfing rate or to differences in heterozygosity. These findings and the similar selfing rates estimated for hatchlings and adults suggest that within-population inbreeding depression is low in L. truncatula.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate the variation in quantitative and molecular traits in the freshwater snail Galba truncatula, from permanent and temporary water habitats. Using a common garden experiment, we measured 20 quantitative traits and molecular variation using seven microsatellites in 17 populations belonging to these two habitats. We estimated trait means in each habitat. We also estimated the distributions of overall genetic quantitative variation (QST), and of molecular variation (FST), within and between habitats. Overall, we observed a lack of association between molecular and quantitative variance. Among habitats, we found QST>FST, an indication of selection for different optima. Individuals from temporary water habitat matured older, at a larger size and were less fecund than individuals from permanent water habitat. We discuss these findings in the light of several theories for life-history traits evolution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Movement strategies of small forage fish (<8 cm total length) between temporary and permanent wetland habitats affect their overall population growth and biomass concentrations, i.e., availability to predators. These fish are often the key energy link between primary producers and top predators, such as wading birds, which require high concentrations of stranded fish in accessible depths. Expansion and contraction of seasonal wetlands induce a sequential alternation between rapid biomass growth and concentration, creating the conditions for local stranding of small fish as they move in response to varying water levels. To better understand how landscape topography, hydrology, and fish behavior interact to create high densities of stranded fish, we first simulated population dynamics of small fish, within a dynamic food web, with different traits for movement strategy and growth rate, across an artificial, spatially explicit, heterogeneous, two-dimensional marsh slough landscape, using hydrologic variability as the driver for movement. Model output showed that fish with the highest tendency to invade newly flooded marsh areas built up the largest populations over long time periods with stable hydrologic patterns. A higher probability to become stranded had negative effects on long-term population size, and offset the contribution of that species to stranded biomass. The model was next applied to the topography of a 10 km × 10 km area of Everglades landscape. The details of the topography were highly important in channeling fish movements and creating spatiotemporal patterns of fish movement and stranding. This output provides data that can be compared in the future with observed locations of fish biomass concentrations, or such surrogates as phosphorus ‘hotspots’ in the marsh.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The object of the present work was to identify the larval habitats of Culex eduardoi and to determine the microenvironmental conditions related to their presence in different artificial freshwater environments (temporary, semi-permanent, irrigation ditches, and drainage ditches) in tillable areas of Chubut Province, Argentina. This report represents the first record of Cx. eduardoi from this Province and extends its range to latitude 45°S. Immature stages of Cx. eduardoi were found in 8 out of 109 (7.3 %) freshwater habitats and were significantly more prevalent in semi-permanent water bodies. Positive sites had significantly larger surface areas and more vegetation cover than negative sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim  The imperfect detection of species may lead to erroneous conclusions about species-environment relationships. Accuracy in species detection usually requires temporal replication at sampling sites, a time-consuming and costly monitoring scheme. Here, we applied a lower-cost alternative based on a double-sampling approach to incorporate the reliability of species detection into regression-based species distribution modelling.Location  Doñana National Park (south-western Spain).Methods  Using species-specific monthly detection probabilities, we estimated the detection reliability as the probability of having detected the species given the species-specific survey time. Such reliability estimates were used to account explicitly for data uncertainty by weighting each absence. We illustrated how this novel framework can be used to evaluate four competing hypotheses as to what constitutes primary environmental control of amphibian distribution: breeding habitat, aestivating habitat, spatial distribution of surrounding habitats and/or major ecosystems zonation. The study was conducted on six pond-breeding amphibian species during a 4-year period.Results  Non-detections should not be considered equivalent to real absences, as their reliability varied considerably. The occurrence of Hyla meridionalis and Triturus pygmaeus was related to a particular major ecosystem of the study area, where suitable habitat for these species seemed to be widely available. Characteristics of the breeding habitat (area and hydroperiod) were of high importance for the occurrence of Pelobates cultripes and Pleurodeles waltl. Terrestrial characteristics were the most important predictors of the occurrence of Discoglossus galganoi and Lissotriton boscai, along with spatial distribution of breeding habitats for the last species.Main conclusions  We did not find a single best supported hypothesis valid for all species, which stresses the importance of multiscale and multifactor approaches. More importantly, this study shows that estimating the reliability of non-detection records, an exercise that had been previously seen as a naïve goal in species distribution modelling, is feasible and could be promoted in future studies, at least in comparable systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temporary streams are those water courses that undergo the recurrent cessation of flow or the complete drying of their channel. The structure and composition of biological communities in temporary stream reaches are strongly dependent on the temporal changes of the aquatic habitats determined by the hydrological conditions. Therefore, the structural and functional characteristics of aquatic fauna to assess the ecological quality of a temporary stream reach cannot be used without taking into account the controls imposed by the hydrological regime. This paper develops methods for analysing temporary streams' aquatic regimes, based on the definition of six aquatic states that summarize the transient sets of mesohabitats occurring on a given reach at a particular moment, depending on the hydrological conditions: Hyperrheic, Eurheic, Oligorheic, Arheic, Hyporheic and Edaphic. When the hydrological conditions lead to a change in the aquatic state, the structure and composition of the aquatic community changes according to the new set of available habitats. We used the water discharge records from gauging stations or simulations with rainfall-runoff models to infer the temporal patterns of occurrence of these states in the Aquatic States Frequency Graph we developed. The visual analysis of this graph is complemented by the development of two metrics which describe the permanence of flow and the seasonal predictability of zero flow periods. Finally, a classification of temporary streams in four aquatic regimes in terms of their influence over the development of aquatic life is updated from the existing classifications, with stream aquatic regimes defined as Permanent, Temporary-pools, Temporary-dry and Episodic. While aquatic regimes describe the long-term overall variability of the hydrological conditions of the river section and have been used for many years by hydrologists and ecologists, aquatic states describe the availability of mesohabitats in given periods that determine the presence of different biotic assemblages. This novel concept links hydrological and ecological conditions in a unique way. All these methods were implemented with data from eight temporary streams around the Mediterranean within the MIRAGE project. Their application was a precondition to assessing the ecological quality of these streams.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aims of this study were to explore the environmental factors that determine the distribution of plant communities in temporary rock pools and provide a quantitative analysis of vegetation-environment relationships for five study sites on the island of Gavdos, southwest of Crete, Greece. Data from 99 rock pools were collected and analysed using Two-Way Indicator Species Analysis (TWINSPAN), Detrended Correspondence Analysis (DCA) and Canonical Correspondence Analysis (CCA) to identify the principal communities and environmental gradients that are linked to community distribution. A total of 46 species belonging to 21 families were recorded within the study area. The dominant families were Labiatae, Gramineae and Compositae while therophytes and chamaephytes were the most frequent life forms. The samples were classified into six community types using TWINSPAN, which were also corroborated by CCA analysis. The principal gradients for vegetation distribution, identified by CCA, were associated with water storage and water retention ability, as expressed by pool perimeter and water depth. Generalised Additive Models (GAMs) were employed to identify responses of four dominant rock pool species to water depth. The resulting species response curves showed niche differentiation in the cases of Callitriche pulchra and Tillaea vaillantii and revealed competition between Zannichellia pedunculata and Chara vulgaris. The use of classification in combination with ordination techniques resulted in a good discrimination between plant communities. Generalised Additive Models are a powerful tool in investigating species response curves to environmental gradients. The methodology adopted can be employed for improving baseline information on plant community ecology and distribution in Mediterranean ephemeral pools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major objective of this study was to determine the relative importance of landscape factors, local abiotic factors, and biotic interactions in influencing tadpole community structure in temporary wetlands. I also examined the influence of agricultural activities in South-central Florida by comparing tadpole communities in native prairie wetlands (a relatively unmodified habitat) at the Kissimmee Prairie Sanctuary (KPS) to tadpole communities in three agriculturally modified habitats found at MacArthur Agro-Ecology Research Center (MAERC). Environmental characteristics were measured in 24 isolated wetlands, and tadpoles were sampled using throw-traps and dipnets during the 1999 wet season (June–October). Landscape characteristics were expected to predominately influence all aspects of community structure because anurans associated with temporary wetland systems are likely to exist as metapopulations. Both landscape characteristics (wetland proximity to nearest woodland and the amount of woodland surrounding the wetland) and biotic interactions (fish predation) had the largest influence on tadpole community structure. Predatory fish influenced tadpole communities more than expected due to the ubiquity of wetlands, lack of topographic relief, and dispersal abilities of several fish species. Differences in tadpole community structure among habitat types were attributed to differences in woodland attributes and susceptibility to fish colonization. Furthermore, agricultural modification of prairie habitats in South-central Florida may benefit amphibian communities, particularly woodland-dwelling species that are unable to coexist with predatory fish. From a conservation standpoint, temporary wetlands proximal to woodland areas and isolated from permanent water sources appear to be most important to amphibians. In addition, the high tadpole densities attained in these wetlands suggest that these wetlands serve as biological hotspots within the landscape, and their benefits extend into the adjacent terrestrial matrix. Further research efforts are needed to quantify the biological productivity of these systems and determine spatial dynamics of anurans in surrounding terrestrial habitats. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major objective of this study was to determine the relative importance of landscape factors, local abiotic factors, and biotic interactions in influencing tadpole community structure in temporary wetlands. I also examined the influence of agricultural activities in South-central Florida by comparing tadpole communities in native prairie wetlands (a relatively unmodified habitat) at the Kissimmee Prairie Sanctuary (KPS) to tadpole communities in three agriculturally modified habitats found at MacArthur Agro- Ecology Research Center (MAERC). Environmental characteristics were measured in 24 isolated wetlands, and tadpoles were sampled using throw-traps and dipnets during the 1999 wet season (June - October). Landscape characteristics were expected to predominately influence all aspects of community structure because anurans associated with temporary wetland systems are likely to exist as metapopulations. Both landscape characteristics (wetland proximity to nearest woodland and the amount of woodland surrounding the wetland) and biotic interactions (fish predation) had the largest influence on tadpole community structure. Predatory fish influenced tadpole communities more than expected due to the ubiquity of wetlands, lack of topographic relief, and dispersal abilities of several fish species. Differences in tadpole community structure among habitat types were attributed to differences in woodland attributes and susceptibility to fish colonization. Furthermore, agricultural modification of prairie habitats in South-central Florida may benefit amphibian communities, particularly woodland-dwelling species that are unable to coexist with predatory fish. From a conservation standpoint, temporary wetlands proximal to woodland areas and isolated from permanent water sources appear to be most important to amphibians. In addition, the high tadpole densities attained in these wetlands suggest that these wetlands serve as biological hotspots within the landscape, and their benefits extend into the adjacent terrestrial matrix. Further research efforts are needed to quantify the biological productivity of these systems and determine spatial dynamics of anurans in surrounding terrestrial habitats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temporary ponds are seasonal wetland habitats subjected to extreme and unstable ecological conditions. Some are classified as priority habitats for conservation by the European Union Habitats Directive. Our study area was the coastal plain of southwest Portugal, which spans across 100km north to south and hosts a large number of temporary ponds as a consequence of climatic and edaphic characteristics. Field sampling of floristic and edaphic data was carried out in 24 temporary ponds every spring between 2005 and 2008. We recorded a total of 174 plant species identified within visually homogeneous plots. We included the data in a geographic information system and classified ponds according to their floristic composition, using a biotic regionalization analysis based on species presence/absence, which is a practical and unambiguous criterion. We found three significantly different groups of ponds which corresponded to an eco-physiognomic pond typology: Mediterranean temporary ponds, marshlands, and disturbed ponds. For the first two pond types we defined characteristic or indicator plant species. We searched also for relationships between pond type and a series of large-scale climatic, geographic, and geological variables, as well as local-scale physical and chemical properties of the soil. Pond type was distinguished by a complex combination of some of these variables, including environmental energy, soil texture, nitrogen content of the soil and pH. A practical way of discriminating between different

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The assessment of the habitat condition is the first step of conservation actions and several tools are available to assess wetlands. However, only a few tools are adapted to the priority habitat Mediterranean temporary ponds. Thus, our objectives were (i) to identify biological indicators associated with the different conservation status of Mediterranean tem- porary ponds and (ii) to create an efficient evaluation tool for non-experts using indicators of conservation status. A total of 87 ponds were sampled in southwest Portugal to assess the presence of plants, large branchiopods, amphibians, threatened voles and bats. Ponds with favourable conservation status showed higher species richness of plants, large branchiopods and amphibians. We identified eighteen indicators for favourable ponds: 15 plants, one large branchiopod and two amphibian taxa. We propose a new tool to assess the conservation status of Mediterranean tem- porary ponds based on the presence of these indicators. This tool is an alternative to other common, but time- consuming, methods and can be readily used by trained practitioners. The replication and adaptation of this tool to other regions and habitats enables the collection of comparable data and the geographical scaling-up of the assessments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The assessment of the habitat condition is the first step of conservation actions and several tools are available to assess wetlands. However, only a few tools are adapted to the priority habitat Mediterranean temporary ponds. Thus, our objectives were (i) to identify biological indicators associated with the different conservation status of Mediterranean temporary ponds and (ii) to create an efficient evaluation tool for non-experts using indicators of conservation status. A total of 87 ponds were sampled in southwest Portugal to assess the presence of plants, large branchiopods, amphibians, threatened voles and bats. Ponds with favourable conservation status showed higher species richness of plants, large branchiopods and amphibians. We identified eighteen indicators for favourable ponds: 15 plants, one large branchiopod and two amphibian taxa. We propose a new tool to assess the conservation status of Mediterranean temporary ponds based on the presence of these indicators. This tool is an alternative to other common, but time consuming, methods and can be readily used by trained practitioners. The replication and adaptation of this tool to other regions and habitats enables the collection of comparable data and the geographical scaling-up of the assessments.