920 resultados para temperature variation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stroke is a leading cause of disability and death. This study evaluated the association between temperature variation and emergency admissions for stroke in Brisbane, Australia. Daily emergency admissions for stroke, meteorologic and air pollution data were obtained for the period of January 1996 to December 2005. The relative risk of emergency admissions for stroke was estimated with a generalized estimating equations (GEE) model. For primary intracerebral hemorrhage (PIH) emergency admissions, the average daily PIH for the group aged < 65 increased by 15% (95% Confidence Interval (CI): 5, 26%) and 12% (95% CI: 2, 22%) for a 1°C increase in daily maximum temperature and minimum temperature in summer, respectively, after controlling for potential confounding effects of humidity and air pollutants. For ischemic stroke (IS) emergency admissions, the average daily IS for the group aged ≥ 65 decreased by 3% (95% CI: -6, 0%) for a 1°C increase in daily maximum temperature in winter after adjustment for confounding factors. Temperature variation was significantly associated with emergency admissions for stroke, and its impact varied with different type of stroke. Health authorities should pay greater attention to possible increasing emergency care for strokes when temperature changes, in both summer and winter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extreme temperatures have been shown to have a detrimental effect on health. Hot temperatures can increase the risk of mortality, particularly in people suffering from cardiorespiratory diseases. Given the onset of climate change, it is critical that the impact of temperature on health is understood, so that effective public health strategies can correctly identify vulnerable groups within the population. However, while effects on mortality have been extensively studied, temperature–related morbidity has received less attention. This study applied a systematic review and meta–analysis to examine the current literature relating to hot temperatures and morbidity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives To investigate whether a sudden temperature change between neighboring days has significant impact on mortality. Methods A Poisson generalized linear regression model combined with a distributed lag non-linear models was used to estimate the association of temperature change between neighboring days with mortality in a subtropical Chinese city during 2008–2012. Temperature change was calculated as the current day’s temperature minus the previous day’s temperature. Results A significant effect of temperature change between neighboring days on mortality was observed. Temperature increase was significantly associated with elevated mortality from non-accidental and cardiovascular diseases, while temperature decrease had a protective effect on non-accidental mortality and cardiovascular mortality. Males and people aged 65 years or older appeared to be more vulnerable to the impact of temperature change. Conclusions Temperature increase between neighboring days has a significant adverse impact on mortality. Further health mitigation strategies as a response to climate change should take into account temperature variation between neighboring days.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of temperature variation on sister chromatid exchange (SCE) frequencies in human lymphocytes was studied. An increase as well as decrease in incubation temperature of cells leads to a higher frequency of sister chromatid exchanges than in cultures grown at 37°C. In addition, it was observed that mitotic: index and cell cycle duration were affected by low temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A graphical method is presented for Hall data analysis, including the temperature variation of activation energy due to screening. This method removes the discrepancies noted in the analysis of recently reported Hall data on Si(In).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An exact solution for determining the thermal stresses in a finite short cylinder due to an axisymmetric steady temperature field along the curved surface has been given. It is shown that a part of the solution obtained for this problem can be used to determine the thermal stresses in a finite solid cylinder heated over the end surfaces. Numerical results for a finite cylinder symmetrically heated over a portion on the curved surface and heated over the complete end surfaces have been given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the investigations of laminar free convection heat transfer from vertical cylinders and wires whose surface temperature varies along the height according to the relation TW - T∞ = Nxn. The set of boundary layer partial differential equations and the boundary conditions are transformed to a more amenable form and solved by the process of successive substitution. Numerical solutions of the first approximated equations (two-point nonlinear boundary value type of ordinary differential equations) bring about the major contribution to the problem (about 95%), as seen from the solutions of higher approximations. The results reduce to those for the isothermal case when n=0. Criteria for classifying the cylinders into three broad categories, viz., short cylinders, long cylinders and wires, have been developed. For all values of n the same criteria hold. Heat transfer correlations obtained for short cylinders (which coincide with those of flat plates) are checked with those available in the literature. Heat transfer and fluid flow correlations are developed for all the regimes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigation on laminar free convection heat transfer from vertical cylinders and wires having a surface temperature variation of the form TW - T∞ = M emx are presented. As in Part I for power law surface temperature variation, the axisymmetric boundary layer equations of mass, momentum and energy are transformed to more convenient forms and solved numerically. The second approximation refines the results of the first upto a maximum of only 2%. Analysis of the results indicates that cylinders can be classified into the same three categories as in Part I, namely, short cylinders, long cylinders, and wires, heat transfer and fluid flow correlations being developed for each case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal expansion of magnesium oxide has been measured below room temperature from 140°K to 284.5°K, using an interferometric method. The accuracy of measurement is better than 3% in the temperature range studied. The agreement of these results with Durand's is quite good, but consistently higher over most of the range by 2 or 3%, for the most part within the estimated experimental error. The Grüneisen parameter remains constant at about 1.51 over the present experimental range; but an isolated measurement of Durand at 85°K suggests that at lower temperatures it rises quite sharply above this value. This possibility is therefore investigated theoretically. With a non-central force model to represent MgO, γ(−3) and γ(2) are calculated and it is found that γ(−3) > γ(2), again suggesting that the Grüneisen parameter increases with falling temperature. Of the two reported experimental values for the infra-red absorption frequency, correlation with the heat capacity strongly indicates a wavelength of 25.26μm rather than 17.3μm. Thermal expansion measurements at still lower temperatures must be carried out to confirm definitely the rise in the Grüneisen parameter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cowper-Symonds and Johnson-Cook dynamic constitutive relations are used to study the influence of both strain rate effect and temperature variation on the material intrinsic length scale in strain gradient plasticity. The material intrinsic length scale decreases with increasing strain rates, and this length scale increases with temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three-stage low-pressure model steam turbine at the Institute of Thermal Turbomachinery and Machinery Laboratory (ITSM) was used to study the impact of three different steam inlet temperatures on the homogeneous condensation process and the resulting wetness topology. The droplet spectrum as well as the particle number concentration were measured in front of the last stage using an optical-pneumatic probe. At design load, condensation starts inside the stator of the second stage. A change in the steam inlet temperature is able to shift the location of condensation onset within the blade row up- or downstream and even into adjoining blade passages, which leads to significantly different local droplet sizes and wetness fractions due to different local expansion rates. The measured results are compared to steady three-dimensional computational fluid dynamics calculations. The predicted nucleation zones could be largely confirmed by the measurements. Although the trend of measured and calculated droplet size across the span is satisfactory, there are considerable differences between the measured and computed droplet spectrum and wetness fractions. © IMechE 2013 Reprints and permissions: sagepub.co.uk/ journalsPermissions.nav.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chinese Academy of Sciences [KZCX2-YW-315, KZCX2-YW-Q1-01]; National Natural Science Foundation of China [40625002, 90502009, 200905006]; Office of Science (BER), U. S. Department of Energy ; EU/FP7 [212250]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Volume(density)-independent pair-potentials cannot describe metallic cohesion adequately as the presence of the free electron gas renders the total energy strongly dependent on the electron density. The embedded atom method (EAM) addresses this issue by replacing part of the total energy with an explicitly density-dependent term called the embedding function. Finnis and Sinclair proposed a model where the embedding function is taken to be proportional to the square root of the electron density. Models of this type are known as Finnis-Sinclair many body potentials. In this work we study a particular parametrization of the Finnis-Sinclair type potential, called the "Sutton-Chen" model, and a later version, called the "Quantum Sutton-Chen" model, to study the phonon spectra and the temperature variation thermodynamic properties of fcc metals. Both models give poor results for thermal expansion, which can be traced to rapid softening of transverse phonon frequencies with increasing lattice parameter. We identify the power law decay of the electron density with distance assumed by the model as the main cause of this behaviour and show that an exponentially decaying form of charge density improves the results significantly. Results for Sutton-Chen and our improved version of Sutton-Chen models are compared for four fcc metals: Cu, Ag, Au and Pt. The calculated properties are the phonon spectra, thermal expansion coefficient, isobaric heat capacity, adiabatic and isothermal bulk moduli, atomic root-mean-square displacement and Gr\"{u}neisen parameter. For the sake of comparison we have also considered two other models where the distance-dependence of the charge density is an exponential multiplied by polynomials. None of these models exhibits the instability against thermal expansion (premature melting) as shown by the Sutton-Chen model. We also present results obtained via pure pair potential models, in order to identify advantages and disadvantages of methods used to obtain the parameters of these potentials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: The aim of this study was to evaluate the intrapulpal temperature variation after bleaching treatment with 35% hydrogen peroxide using different sources of activation. Material and Methods: Twenty-four human teeth were sectioned in the mesiodistal direction providing 48 specimens, and were divided into 4 groups (n=12): (G1) Control - Bleaching gel without light activation, (G2) Bleaching gel + halogen light, (G3) Bleaching gel + LED, (G4) Bleaching gel + Nd: YAG Laser. The temperatures were recorded using a digital thermometer at 4 time points: before bleaching gel application, 1 min after bleaching gel application, during activation of the bleaching gel, and after the bleaching agent turned from a dark-red into a clear gel. Data were analyzed statistically by the Dunnet's test, ANOVA and Tukey's test (alpha=0.05). Results: The mean intrapulpal temperature values (degrees C) in the groups were: G1: 0.617 +/- 0.41; G2: 1.800 +/- 0.68; G3: 0.975 +/- 0.51; and G4: 4.325 +/- 1.09. The mean maximum temperature variation (MTV) values were: 1.5 degrees C (G1), 2.9 degrees C (G2), 1.7 degrees C (G3) and 6.9 degrees C (G4). When comparing the experimental groups to the control group, G3 was not statistically different from G1 (p>0.05), but G2 and G4 presented significantly higher (p<0.05) intrapulpal temperatures and MTV. The three experimental groups differed significantly (p<0.05) from each other. Conclusions: The Nd: YAG laser was the activation method that presented the highest values of intrapulpal temperature variation when compared with LED and halogen light. The group activated by LED light presented the lowest values of temperature variation, which were similar to that of the control group.