254 resultados para telomere


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural killer (NK) cells are cytotoxic cells that play a critical role in the innate immune response against infections and tumors. In the elderly, the cytotoxic function of NK cells is often compromised. Telomeres progressively shorten with each cell division and with age in most somatic cells eventually leading to chromosomal instability and cellular senescence. We studied the telomere length in NK cell subsets isolated from peripheral blood using "flow FISH," a method in which the hybridization of telomere probe in cells of interest is measured relative to internal controls in the same tube. We found that the average telomere length in human NK cells decreased with age as was previously found for human T lymphocytes. Separation of adult NK cells based on CD56 and CD16 expression revealed that the telomere length was significantly shorter in CD56(dim)CD16(+) (mature) NK cells compared to CD56(bright)CD16(-) (immature) NK cells from the same donor. Furthermore, sorting of NK cells based on expression of activation markers, such as NKG2D and LFA-1, revealed that NK cells expressing these markers have significantly shorter telomeres. Telomere fluorescence was very heterogeneous in NK cells expressing CD94, killer inhibitory receptor (KIR), NKG2A, or CD161. Our observations indicate that telomeric DNA in NK cells is lost with cell division and with age similar to what has been observed for most other hematopoietic cells. Telomere attrition in NK cells is a plausible cause for diminished NK cell function in the elderly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients with dyskeratosis congenita (DC), a heterogeneous inherited bone marrow failure syndrome, have abnormalities in telomere biology, including very short telomeres and germline mutations in DKC1, TERC, TERT, or NOP10, but approximately 60% of DC patients lack an identifiable mutation. With the very short telomere phenotype and a highly penetrant, rare disease model, a linkage scan was performed on a family with autosomal-dominant DC and no mutations in DKCI, TERC, or TERT. Evidence favoring linkage was found at 2p24 and 14q11.2, and this led to the identification of TINF2 (14q11.2) mutations, K280E, in the proband and her five affected relatives and TINF2 R282H in three additional unrelated DC probands, including one with Revesz syndrome; a fifth DC proband had a R282S mutation. TINF2 mutations were not present in unaffected relatives, DC probands with mutations in DKC1, TERC, or TERT or 298 control subjects. We demonstrate that a fifth gene, TINF2, is mutated in classical DC and, for the first time, in Revesz syndrome. This represents the first shelterin complex mutation linked to human disease and confirms the role of very short telomeres as a diagnostic test for DC.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colorectal cancer is a complex disease that is thought to arise when cells accumulate mutations that allow for uncontrolled growth. There are several recognized mechanisms for generating such mutations in sporadic colon cancer; one of which is chromosomal instability (CIN). One hypothesized driver of CIN in cancer is the improper repair of dysfunctional telomeres. Telomeres comprise the linear ends of chromosomes and play a dual role in cancer. Its length is maintained by the ribonucleoprotein, telomerase, which is not a normally expressed in somatic cells and as cells divide, telomeres continuously shorten. Critically shortened telomeres are considered dysfunctional as they are recognized as sites of DNA damage and cells respond by entering into replicative senescence or apoptosis, a process that is p53-dependent and the mechanism for telomere-induced tumor suppression. Loss of this checkpoint and improper repair of dysfunctional telomeres can initiate a cycle of fusion, bridge and breakage that can lead to chromosomal changes and genomic instability, a process that can lead to transformation of normal cells to cancer cells. Mouse models of telomere dysfunction are currently based on knocking out the telomerase protein or RNA component; however, the naturally long telomeres of mice require multiple generational crosses of telomerase null mice to achieve critically short telomeres. Shelterin is a complex of six core proteins that bind to telomeres specifically. Pot1a is a highly conserved member of this complex that specifically binds to the telomeric single-stranded 3’ G-rich overhang. Previous work in our lab has shown that Pot1a is essential for chromosomal end protection as deletion of Pot1a in murine embryonic fibroblasts (MEFs) leads to open telomere ends that initiate a DNA damage response mediated by ATR, resulting in p53-dependent cellular senescence. Loss of Pot1a in the background of p53 deficiency results in increased aberrant homologous recombination at telomeres and elevated genomic instability, which allows Pot1a-/-, p53-/- MEFs to form tumors when injected into SCID mice. These phenotypes are similar to those seen in cells with critically shortened telomeres. In this work, we created a mouse model of telomere ysfunction in the gastrointestinal tract through the conditional deletion of Pot1a that recapitulates the microscopic features seen in severe telomere attrition. Combined intestinal loss of Pot1a and p53 lead to formation of invasive adenocarcinomas in the small and large intestines. The tumors formed with long latency, low multiplicity and had complex genomes due to chromosomal instability, features similar to those seen in sporadic human colorectal cancers. Taken together, we have developed a novel mouse model of intestinal tumorigenesis based on genomic instability driven by telomere dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE Telomere length is a marker of biological aging that has been linked to cardiovascular disease risk. The black South African population is witnessing a tremendous increase in the prevalence of cardiovascular disease, part of which might be explained through urbanization. We compared telomere length between black South Africans and white South Africans and examined which biological and psychosocial variables played a role in ethnic difference in telomere length. METHODS We measured leukocyte telomere length in 161 black South African teachers and 180 white South African teachers aged 23 to 66 years without a history of atherothrombotic vascular disease. Age, sex, years having lived in the area, human immunodeficiency virus (HIV) infection, hypertension, body mass index, dyslipidemia, hemoglobin A1c, C-reactive protein, smoking, physical activity, alcohol abuse, depressive symptoms, psychological distress, and work stress were considered as covariates. RESULTS Black participants had shorter (median, interquartile range) relative telomere length (0.79, 0.70-0.95) than did white participants (1.06, 0.87-1.21; p < .001), and this difference changed very little after adjusting for covariates. In fully adjusted models, age (p < .001), male sex (p = .011), and HIV positive status (p = .023) were associated with shorter telomere length. Ethnicity did not significantly interact with any covariates in determining telomere length, including psychosocial characteristics. CONCLUSIONS Black South Africans showed markedly shorter telomeres than did white South African counterparts. Age, male sex, and HIV status were associated with shorter telomere length. No interactions between ethnicity and biomedical or psychosocial factors were found. Ethnic difference in telomere length might primarily be explained by genetic factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND/OBJECTIVES Obesity contributes to telomere attrition. Studies focusing on short-term effects of weight loss have been unable to identify protection of telomere length. This study investigates long-term effects of pronounced weight loss induced by bariatric surgery on telomere length. SUBJECTS/METHODS One hundred forty-two patients were recruited in a prospective, controlled intervention study, follow-up investigations were done after 10.46±1.48 years. A control group of normal weight participants was recruited and followed from 1995 to 2005 in the Bruneck Study. A total of 110 participants from each study was matched by age and sex to compare changes in telomere length. Quantitative PCR was used to determine telomere length. RESULTS Telomere length increased significantly by 0.024±0.14 (P=0.047) in 142 bariatric patients within 10 years after surgery. The increase was different from telomere attrition in an age- and sex-matched cohort population of the Bruneck Study (-0.057±0.18; β=0.08; P=0.003). Significant changes in telomere length disappeared after adjusting for baseline body mass index (BMI) because of general differences in BMI and telomere length between the two study populations (β=0.07; P=0.06). Age was proportional to telomere length in matched bariatric patients (r=0.188; P=0.049) but inversely correlated with telomere length in participants of the Bruneck Study (r=-0.197; P=0.039). There was no association between percent BMI/excess weight loss and telomere attrition in bariatric patients. Baseline telomere length in bariatric patients was inversely associated with baseline plasma cholesterol and triglyceride concentrations. Telomere shortening was associated with lower high-density lipoprotein cholesterol and higher fasting glucose concentration at baseline in bariatric patients. CONCLUSIONS Increases in relative telomere length were found after bariatric surgery in the long term, presumably due to amelioration of metabolic traits. This may overrule the influence of age and baseline telomere length and facilitate telomere protection in patients experiencing pronounced weight loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Telomere attrition has been linked to accelerate vascular ageing and seems to predispose for vascular disease. Our aim was to study the telomere length dynamics over time and in subsets of leukocytes from 15 patients with peripheral arterial disease (PAD). The mean telomere length in subsets of leukocytes of patients with PAD was in the normal range of age-related telomere length values from healthy individuals. However, we found significant higher telomere attrition for T-cells from patients with PAD over a time period of six months when compared to the controls. The higher telomere loss in T-cells of patients with PAD most likely reflects a higher cell turnover of this leukocyte subset, which is involved in the process of chronic inflammatory disease underlying vascular disease. Further studies are needed to confirm these data and to assess how far this T-cell telomere attrition will correlate to the extent of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ends of eukaryotic chromosomes are protected by specialized ribonucleoprotein structures termed telomeres. Telomeres protect chromosomes from end-to-end fusions, inappropriate repair and degradation. Disruption of this complex activates an ATM/ATR DNA damage response (DDR) pathway. One component of the complex is the Protection Of Telomeres 1 (POT1) protein, an evolutionarily conserved protein which binds single-stranded 3' overhang and is required for both chromosomal end protection and telomere length regulation. The mouse contains two POT1 orthologs, Pot1a and Pot1b. Here we show that both proteins colocalize with telomeres through interaction with the adapter protein TPP1. In addition, compared to Pot1a, the OB-folds of Pot1b possess less sequence specificity for telomeres. Disruption of POT1 proteins result in telomere dysfunction and activation of an ATR-dependent DDR at telomeres, suggesting that this response is normally suppressed by POT1 binding to the single-stranded G-overhang. ^ Telomeres are maintained by telomerase, and its absence in somatic cells results in telomere progressive loss that triggers the activation of p53. Telomere dysfunction initiates genomic instability and induces both p53-dependent replicative senescence and apoptosis to suppress tumorigenesis. In the absence of functional p53, this genomic instability promotes cancer. It was previously not known which aspect of the p53 dependent DNA damage response is important to suppress tumorigenesis initiated by dysfunctional telomeres. The p53R172P knock-in mouse, which is unable to induce apoptosis but retains intact cell cycle arrest/cellular senescence pathways, allowed us to examine whether p53-dependent apoptosis is a major tumor suppression pathway initiated in the setting of telomere dysfunction. Spontaneous tumorigenesis remains potently suppressed in late generation telomerase null mice possessing the p53P/P mutation. These results suggest that suppression of spontaneous tumorigenesis initiated by dysfunctional telomeres requires activation of a p53-dependent senescence pathway. In addition, we used another knock-in mouse model with a p53R172H (p53H) point mutation to test the hypothesis that telomere dysfunction promotes chromosomal instability and accelerates the onset of tumorigenesis in vivo in the setting of this most common gain-of-function mutation in the human Li Fraumeni cancer syndrome. We unexpectedly observed that telomerase null mice possessing dysfunctional telomeres in the setting of the p53H/+ mutation develop significantly fewer tumors, die prematurely and exhibit higher level of cellular senescence, apoptosis and elevated genomic instability compared to telomerase intact p53H/+ and telomerase null p53+/+ mice. These contrasting results thus link cancer and aging to the functional status of telomeres and the integrity of the p53 pathway. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure to air pollutants in urban locales has been associated with increased risk for chronic diseases including cardiovascular disease (CVD) and pulmonary diseases in epidemiological studies. The exact mechanism explaining how air pollution affects chronic disease is still unknown. However, oxidative stress and inflammatory pathways have been posited as likely mechanisms. ^ Data from the Multi-Ethnic Study of Atherosclerosis (MESA) and the Mexican-American Cohort Study (2003-2009) were used to examine the following aims, respectively: 1) to evaluate the association between long-term exposure to ambient particulate matter (PM) (PM10 and PM2.5) and nitrogen oxides (NO x) and telomere length (TL) among approximately 1,000 participants within MESA; and 2) to evaluate the association between traffic-related air pollution with self-reported asthma, diabetes, and hypertension among Mexican-Americans in Houston, Texas. ^ Our results from MESA were inconsistent regarding associations between long-term exposure to air pollution and shorter telomere length based on whether the participants came from New York (NY) or Los Angeles (LA). Although not statistically significant, we observed a negative association between long-term air pollution exposure and mean telomere length for NY participants, which was consistent with our hypothesis. Positive (statistically insignificant) associations were observed for LA participants. It is possible that our findings were more influenced by both outcome and exposure misclassification than by the absence of a relationship between pollution and TL. Future studies are needed that include longitudinal measures of telomere length as well as focus on effects of specific constituents of PM and other pollutant exposures on changes in telomere length over time. ^ This research provides support that Mexican-American adults who live near a major roadway or in close proximity to a dense street network have a higher prevalence of asthma. There was a non-significant trend towards an increased prevalence of adult asthma with increasing residential traffic exposure especially for residents who lived three or more years at their baseline address. Even though the prevalence of asthma is low in the Mexican-origin population, it is the fastest growing minority group in the U.S. and we would expect a growing number of Mexican-Americans who suffer from asthma in the future. Future studies are needed to better characterize risks for asthma associated with air pollution in this population.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the reasons for animals not to grow as fast as they potentially could is that fast growth has been shown to be associated with reduced lifespan. However, we are still lacking a clear description of the reality of growth-dependent modulation of ageing mechanisms in wild animals. Using the particular growth trajectory of small king penguin chicks naturally exhibiting higher-than-normal growth rate to compensate for the winter break, we tested whether oxidative stress and telomere shortening are related to growth trajectories. Plasma antioxidant defences, oxidative damage levels and telomere length were measured at the beginning and at the end of the post-winter growth period in three groups of chicks (small chicks, which either passed away or survived the growth period, and large chicks). Small chicks that died early during the growth period had the highest level of oxidative damage and the shortest telomere lengths prior to death. Here, we show that small chicks that grew faster did it at the detriment of body maintenance mechanisms as shown by (i) higher oxidative damage and (ii) accelerated telomere loss. Our study provides the first evidence for a mechanistic link between growth and ageing rates under natural conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human fibroblasts whose lifespan in culture has been extended by expression of a viral oncogene eventually undergo a growth crisis marked by failure to proliferate. It has been proposed that telomere shortening in these cells is the property that limits their proliferation. Here we report that ectopic expression of the wild-type reverse transcriptase protein (hTERT) of human telomerase averts crisis, at the same time reducing the frequency of dicentric and abnormal chromosomes. Surprisingly, as the resulting immortalized cells containing active telomerase continue to proliferate, their telomeres continue to shorten to mean lengths below those in control cells that enter crisis. These results provide evidence for a protective function of human telomerase that allows cell proliferation without requiring net lengthening of telomeres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Telomeres play an important role in the immortalization of proliferating cells. The long tandem repeats of 5′-TTAGGG-3′ sequences in human telomeres are potential targets for the anticancer drug cisplatin, which forms mainly intrastrand d(GpG) and d(ApG) cross-links on DNA. The present study reveals that telomeres in cisplatin-treated HeLa cells are markedly shortened and degraded. A dose that killed 61% of the cells but allowed one round of cell division resulted in shortened telomeres before the induction of apoptosis. Higher doses of cisplatin halted cell cycle progression during the first S phase and triggered apoptosis followed by degradation of telomere repeats. A model in which both cell division with incomplete replication and induction of apoptosis by cisplatin could occur was devised to explain the drug-induced telomere loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Telomere length is maintained through a dynamic balance between addition and loss of the terminal telomeric DNA. Normal telomere length regulation requires telomerase as well as a telomeric protein–DNA complex. Previous work has provided evidence that in the budding yeasts Kluyveromyces lactis and Saccharomyces cerevisiae, the telomeric double-stranded DNA binding protein Rap1p negatively regulates telomere length, in part by nucleating, by its C-terminal tail, a higher-order DNA binding protein complex that presumably limits access of telomerase to the chromosome end. Here we show that in K. lactis, truncating the Rap1p C-terminal tail (Rap1p-ΔC mutant) accelerates telomeric repeat turnover in the distal region of the telomere. In addition, combining the rap1-ΔC mutation with a telomerase template mutation (ter1-kpn), which directs the addition of mutated telomeric DNA repeats to telomeres, synergistically caused an immediate loss of telomere length regulation. Capping of the unregulated telomeres of these double mutants with functionally wild-type repeats restored telomere length control. We propose that the rate of terminal telomere turnover is controlled by Rap1p specifically through its interactions with the most distal telomeric repeats.