942 resultados para tablet hardness
Resumo:
Background and Objective: Dispensing medicines into compliance aids is a common practice in pharmacy contrary to manufacturers’ advice and studies have shown the appearance of light-sensitive tablets is compromised by such storage; we previously found evidence of reduced bioavailability at elevated temperature and humidity. Our objective was to examine the physicochemical stability of two generic atenolol tablets in different compliance aids and with aspirin co-storage at room temperature and at 40 °C/75% relative humidity. Methods: The physicochemical stability of atenolol tablets was evaluated after 28 days of storage and compared with controls by examining visual appearance, weight, disintegration, dissolution, friability and hardness to accepted standards and using a previously validated HPLC method for chemical assay. Results and Discussion: The response to storage was brand-dependent and not straightforward. With one make of atenolol (Alpharma), storage in compliance aids even at room temperature impacted on physical stability, reducing tablet hardness, with storage in Dosett® exerting a greater impact than storage in Medidos® (t-test P < 0·001). Co-storage at elevated temperature and humidity also impacted on the appearance of non-coated aspirin tablets (Angette™). The chemical stability of atenolol was not affected and we did not find evidence of changes to bioavailability with either make. Certainly data for one atenolol make (CP Pharmaceuticals) co-stored with aspirin (Angette™ and Nu-Seals) in both compliance aids at room temperature provided evidence of short-term stability. But medicines are dispensed into compliance aids in multi-factorial ways so our study highlights not only the lack of evidence but also a realization that evidence to support real practice may not be accomplished through research. Conclusion: Reassuring practitioners of the continued stability of medicines in compliance aids under the countless condition in which they are dispensed in practice may requires a different approach involving medical device regulators and more definitive professional guidance.
Resumo:
The compaction behavior of powdered solids can be strongly influenced by the physicochemical properties of excipients because they are frequently present in the tablet in larger amounts than the drug itself. The aim of this study was to assess the influence of the granule size of the cellulose on the physical characteristics of tablets produced in punches of different diameters, since this relation has never been explored in the literature. Granules of several sizes were produced by wet granulation and compressed in punches of various diameters by applying different forces. Size distribution, apparent density and flow of granules were assessed, as well as physical characteristics of the tablets (weight, hardness, friability and disintegration time). Reducing the granule size resulted in tablets of adequate crushing strength and fast disintegration; moreover, it allowed tablets to be produced without the need to use forces near the upper limit of the press, thus avoiding premature wear on the tabletting machine. Thus, once a suitable size for a given tablet formulation has been chosen, the granule size selected has been shown to determine the crushing strength of the tablet.
Resumo:
The current study aimed to exploit the electrostatic associative interaction between carrageenan and gelatin to optimise a formulation of lyophilised orally disintegrating tablets (ODTs) suitable for multiparticulate delivery. A central composite face centred (CCF) design was applied to study the influence of formulation variables (gelatin, carrageenan and alanine concentrations) on the crucial responses of the formulation (disintegration time, hardness, viscosity and pH). The disintegration time and viscosity were controlled by the associative interaction between gelatin and carrageenan upon hydration which forms a strong complex that increases the viscosity of the stock solution and forms tablet with higher resistant to disintegration in aqueous medium. Therefore, the levels of carrageenan, gelatin and their interaction in the formulation were the significant factors. In terms of hardness, increasing gelatin and alanine concentration was the most effective way to improve tablet hardness. Accordingly, optimum concentrations of these excipients were needed to find the best balance that fulfilled all formulation requirements. The revised model showed high degree of predictability and optimisation reliability and therefore was successful in developing an ODT formulation with optimised properties that were able deliver enteric coated multiparticulates of omeprazole without compromising their functionality.
Resumo:
The importance of mannitol has increased recently as an emerging diluent for orodispersible dosage forms. The study aims to prepare spray dried mannitol retaining high porosity and mechanical strength for the development of orally disintegrating tablets (ODTs). Aqueous feed of d-mannitol (10% w/v) comprising ammonium bicarbonate, NH4HCO3 (5% w/v) as pore former was spray dried at inlet temperature of 110-170°C. Compacts were prepared at 151MPa and characterized for porosity, hardness and disintegration time. Particle morphology and drying mechanisms were studied using thermal (HSM, DSC and TGA) and polymorphic (XRD) methods. Tablet porosity increased from 0.20±0.002 for pure mannitol to 0.53±0.03 using fabricated porous mannitol. Disintegration time dropped by 50-77% from 135±5.29s for pure mannitol to 75.33±2.52-31.67±1.53s for mannitol 110-170°C. Hardness increased by 150% at 110°C (258.67±28.89N) and 30% at 150°C (152.70±10.58N) compared to pure mannitol tablets (104.17±1.70N). Increasing inlet temperature resulted in reducing tablet hardness due to generation of 'micro-sponge'-like particles exhibiting significant elastic recovery. Impact of mannitol polymorphism on plasticity/elasticity cannot be ruled out as a mixture of α and β polymorphs formed upon spray drying.
Resumo:
Mannitol is an essential excipient employed in orally disintegrating tablets due to its high palatability. However its fundamental disadvantage is its fragmentation during direct compression, producing mechanically weak tablets. The primary aim of this study was to assess the fracture behaviour of crystalline mannitol in relation to the energy input during direct compression, utilising ball milling as the method of energy input, whilst assessing tablet characteristics of post-milled powders. Results indicated that crystalline mannitol fractured at the hydrophilic (011) plane, as observed through SEM, alongside a reduction in dispersive surface energy. Disintegration times of post-milled tablets were reduced due to the exposure of the hydrophilic plane, whilst more robust tablets were produced. This was shown through higher tablet hardness and increased plastic deformation profiles of the post-milled powders, as observed with a lower yield pressure through an out-of-die Heckel analysis. Evaluation of crystal state using x-ray diffraction/differential scanning calorimetry showed that mannitol predominantly retained the β-polymorph; however x-ray diffraction provided a novel method to calculate energy input into the powders during ball milling. It can be concluded that particle size reduction is a pragmatic strategy to overcome the current limitation of mannitol fragmentation and provide improvements in tablet properties.
Resumo:
OBJECTIVES: The aim of this study was to investigate the influence of process parameters during dry coating on particle and dosage form properties upon varying the surface adsorbed moisture of microcrystalline cellulose (MCC), a model filler/binder for orally disintegrating tablets (ODTs). METHODS: The moisture content of MCC was optimised using the spray water method and analysed using thermogravimetric analysis. Microproperty/macroproperty assessment was investigated using atomic force microscopy, nano-indentation, scanning electron microscopy, tablet hardness and disintegration testing. KEY FINDINGS: The results showed that MCC demonstrated its best flowability at a moisture content of 11.2% w/w when compared to control, comprising of 3.9% w/w moisture. The use of the composite powder coating process (without air) resulted in up to 80% increase in tablet hardness, when compared to the control. The study also demonstrated that surface adsorbed moisture can be displaced upon addition of excipients during dry processing circumventing the need for particle drying before tabletting. CONCLUSIONS: It was concluded that MCC with a moisture content of 11% w/w provides a good balance between powder flowability and favourable ODT characteristics.
Resumo:
Purpose: To develop and optimise some variables that influence fluoxetine orally disintegrating tablets (ODTs) formulation. Methods: Fluoxetine ODTs tablets were prepared using direct compression method. Three-factor, 3- level Box-Behnken design was used to optimize and develop fluoxetine ODT formulation. The design suggested 15 formulations of different lubricant concentration (X1), lubricant mixing time (X2), and compression force (X3) and then their effect was monitored on tablet weight (Y1), thickness (Y2), hardness (Y3), % friability (Y4), and disintegration time (Y5). Results: All powder blends showed acceptable flow properties, ranging from good to excellent. The disintegration time (Y5) was affected directly by lubricant concentration (X1). Lubricant mixing time (X2) had a direct effect on tablet thickness (Y2) and hardness (Y3), while compression force (X3) had a direct impact on tablet hardness (Y3), % friability (Y4) and disintegration time (Y5). Accordingly, Box-Behnken design suggested an optimized formula of 0.86 mg (X1), 15.3 min (X2), and 10.6 KN (X3). Finally, the prediction error percentage responses of Y1, Y2, Y3, Y4, and Y5 were 0.31, 0.52, 2.13, 3.92 and 3.75 %, respectively. Formula 4 and 8 achieved 90 % of drug release within the first 5 min of dissolution test. Conclusion: Fluoxetine ODT formulation has been developed and optimized successfully using Box- Behnken design and has also been manufactured efficiently using direct compression technique.
Resumo:
Thin solid films were extensively used in the making of solar cells, cutting tools, magnetic recording devices, etc. As a result, the accurate measurement of mechanical properties of the thin films, such as hardness and elastic modulus, was required. The thickness of thin films normally varies from tens of nanometers to several micrometers. It is thus challenging to measure their mechanical properties. In this study, a nanoscratch method was proposed for hardness measurement. A three-dimensional finite element method (3-D FEM) model was developed to validate the nanoscratch method and to understand the substrate effect during nanoscratch. Nanoindentation was also used for comparison. The nanoscratch method was demonstrated to be valuable for measuring hardness of thin solid films.
Resumo:
In this paper we examine the usability of tablets for students in middle school in the context of mobile environmental education. Our study focuses on the expressive qualities of three input methods – text, audio and drawing – and the extent to which these methods support on-task behaviour. In our study 28 small groups of children were given iPads and asked to record ecological observations from around their schoolyard. The effectiveness of the devices and their core utility for expressive, on-task data capture is assessed.
Resumo:
Effective digital human model (DHM) simulation of automotive driver packaging ergonomics, safety and comfort depends on accurate modelling of occupant posture, which is strongly related to the mechanical interaction between human body soft tissue and flexible seat components. This paper comprises: a study investigating the component mechanical behaviour of a spring-suspended, production level seat when indented by SAE J826 type, human thigh-buttock representing hard shell; a model of seated human buttock shape for improved indenter design using a multivariate representation of Australian population thigh-buttock anthropometry; and a finite-element study simulating the deflection of human buttock and thigh soft tissue when seated, based on seated MRI. The results of the three studies provide a description of the mechanical properties of the driver-seat interface, and allow validation of future dynamic simulations, involving multi-body and finite-element (FE) DHM in virtual ergonomic studies.
Resumo:
Plasma enhanced chemical vapour deposition silicon nitride thin films are widely used in microelectromechanical system devices as structural materials because the mechanical properties of those films can be tailored by adjusting deposition conditions. However, accurate measurement of the mechanical properties, such as hardness, of films with thicknesses at nanometric scale is challenging. In the present study, the hardness of the silicon nitride films deposited on silicon substrate under different deposit conditions was characterised using nanoindentation and nanoscratch deconvolution methods. The hardness values obtained from the two methods were compared. The effect of substrate on the measured results was discussed.
Resumo:
Purpose: The objective of the study was to assess the bioequivalence of two tablet formulations of capecitabine and to explore the effect of age, gender, body surface area and creatinine clearance on the systemic exposure to capecitabine and its metabolites. Methods: The study was designed as an open, randomized two-way crossover trial. A single oral dose of 2000 mg capecitabine was administered on two separate days to 25 patients with solid tumors. On one day, the patients received four 500-mg tablets of formulation B (test formulation) and on the other day, four 500-mg tablets of formulation A (reference formulation). The washout period between the two administrations was between 2 and 8 days. After each administration, serial blood and urine samples were collected for up to 12 and 24 h, respectively. Unchanged capecitabine and its metabolites were determined in plasma using LC/MS-MS and in urine by NMRS. Results: Based on the primary pharmacokinetic parameter, AUC(0-∞) of 5'-DFUR, equivalence was concluded for the two formulations, since the 90% confidence interval of the estimate of formulation B relative to formulation A of 97% to 107% was within the acceptance region 80% to 125%. There was no clinically significant difference between the t(max) for the two formulations (median 2.1 versus 2.0 h). The estimate for C(max) was 111% for formulation B compared to formulation A and the 90% confidence interval of 95% to 136% was within the reference region 70% to 143%. Overall, these results suggest no relevant difference between the two formulations regarding the extent to which 5'-DFUR reached the systemic circulation and the rate at which 5'-DFUR appeared in the systemic circulation. The overall urinary excretions were 86.0% and 86.5% of the dose, respectively, and the proportion recovered as each metabolite was similar for the two formulations. The majority of the dose was excreted as FBAL (61.5% and 60.3%), all other chemical species making a minor contribution. Univariate and multivariate regression analysis to explore the influence of age, gender, body surface area and creatinine clearance on the log-transformed pharmacokinetic parameters AUC(0-∞) and C(max) of capecitabine and its metabolites revealed no clinically significant effects. The only statistically significant results were obtained for AUC(0-∞) and C(max) of intact drug and for C(max) of FBAL, which were higher in females than in males. Conclusion: The bioavailability of 5'-DFUR in the systemic circulation was practically identical after administration of the two tablet formulations. Therefore, the two formulations can be regarded as bioequivalent. The variables investigated (age, gender, body surface area, and creatinine clearance) had no clinically significant effect on the pharmacokinetics of capecitabine or its metabolites.
Resumo:
The sum of k mins protocol was proposed by Hopper and Blum as a protocol for secure human identification. The goal of the protocol is to let an unaided human securely authenticate to a remote server. The main ingredient of the protocol is the sum of k mins problem. The difficulty of solving this problem determines the security of the protocol. In this paper, we show that the sum of k mins problem is NP-Complete and W[1]-Hard. This latter notion relates to fixed parameter intractability. We also discuss the use of the sum of k mins protocol in resource-constrained devices.