32 resultados para t-ACPD
Resumo:
The changes in mean arterial pressure (MAP) and heart rate (HR) in response to the activation of metabotropic receptors in the nucleus tractus solitarii (NTS) with trans-(±)-1-amino-1,3-cyclopentanedicarboxylic acid (trans-(±)-ACPD) were evaluated in conscious and anesthetized Wistar, male rats weighing 240-260 g (N = 8). The responses obtained with trans-(±)-ACPD were compared with the responses to L-glutamate (1 nmol/100 nl), since in a previous study we showed that anesthesia converted a pressor response to L-glutamate microinjected into the NTS of conscious rats to a depressor response in the same rats under urethane or chloralose anesthesia. Microinjection of 3 doses of trans-(±)-ACPD (100, 500 and 1000 pmol/100 nl) produced a dose-dependent fall in MAP (range, -20 to -50 mmHg) and HR (range, -30 to -170 bpm) under both conscious and chloralose anesthesia conditions. These data indicate that the cardiovascular responses to the activation of metabotropic receptors by trans-(±)-ACPD are not affected by chloralose anesthesia while the cardiovascular responses to the activation of excitatory amino acid (EAA) receptors by L-glutamate are significantly altered
Resumo:
Using immunocytochemistry and multiunit recording of afferent activity of the whole vestibular nerve, we investigated the role of metabotropic glutamate receptors (mGluR) in the afferent neurotransmission in the frog semicircular canals (SCC). Group I (mGluR1alpha) and group II (mGluR2/3) mGluR immunoreactivities were distributed to the vestibular ganglion neurons, and this can be attributed to a postsynaptic locus of metabotropic regulation of rapid excitatory transmission. The effects of group I/II mGluR agonist (1S,3R)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (ACPD) and antagonist (R,S)-alpha-methyl-4-carboxyphenylglycine (MCPG) on resting and chemically induced afferent activity were studied. ACPD (10-100 microM) enhanced the resting discharge frequency. MCPG (5-100 microM) led to a concentration-dependent decrease of both resting activity and ACPD-induced responses. If the discharge frequency had previously been restored by L-glutamate (L-Glu) in high-Mg2+ solution, ACPD elicited a transient increase in the firing rate in the afferent nerve suggesting that ACPD acts on postsynaptic receptors. The L-Glu agonists, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA), were tested during application of ACPD. AMPA- and NMDA-induced responses were higher in the presence than absence of ACPD, implicating mGluR in the modulation of ionotropic glutamate receptors. These results indicate that activation of mGluR potentiates AMPA and NMDA responses through a postsynaptic interaction. We conclude that ACPD may exert modulating postsynaptic effects on vestibular afferents and that this process is activity-dependent.
Resumo:
The behavioral effects of trans-(±)-1-amino-1,3-cyclopentanedicarboxylic acid (t-ACPD), a metabotropic glutamate receptor (mGluR) agonist, or 0.9% (w/v) saline, injected into the dorsal periaqueductal gray (DPAG), was investigated. Male Wistar rats showed defense reactions characterized by jumps toward the top edges of the cages (saline = 0 vs t-ACPD = 6.0, medians P<0.05) and gallops (saline = 0 vs t-ACPD = 10.0, medians P<0.05) during the 60-s period after the beginning of the injection. In another experiment animals were placed inside an open arena for 5 min immediately after injection. Their behavior was recorded by a video camera and a computer program analyzed the videotapes. Eleven of fifteen rats injected with t-ACPD showed a short-lasting (about 1 min) flight reaction. No saline-treated animal showed this reaction (P<0.0005, chi-square test). The drug induced an increase in turning behavior (P = 0.002, MANOVA) and a decrease in the number of rearings (P<0.001, MANOVA) and grooming episodes (P<0.001, MANOVA). These results suggest that mGluRs play a role in the control of defense reactions in the DPAG.
Resumo:
A new technique is described for the analysis of cloud-resolving model simulations, which allows one to investigate the statistics of the lifecycles of cumulus clouds. Clouds are tracked from timestep-to-timestep within the model run. This allows for a very simple method of tracking, but one which is both comprehensive and robust. An approach for handling cloud splits and mergers is described which allows clouds with simple and complicated time histories to be compared within a single framework. This is found to be important for the analysis of an idealized simulation of radiative-convective equilibrium, in which the moist, buoyant, updrafts (i.e., the convective cores) were tracked. Around half of all such cores were subject to splits and mergers during their lifecycles. For cores without any such events, the average lifetime is 30min, but events can lengthen the typical lifetime considerably.
Resumo:
Most parameterizations for precipitating convection in use today are bulk schemes, in which an ensemble of cumulus elements with different properties is modelled as a single, representative entraining-detraining plume. We review the underpinning mathematical model for such parameterizations, in particular by comparing it with spectral models in which elements are not combined into the representative plume. The chief merit of a bulk model is that the representative plume can be described by an equation set with the same structure as that which describes each element in a spectral model. The equivalence relies on an ansatz for detrained condensate introduced by Yanai et al. (1973) and on a simplified microphysics. There are also conceptual differences in the closure of bulk and spectral parameterizations. In particular, we show that the convective quasi-equilibrium closure of Arakawa and Schubert (1974) for spectral parameterizations cannot be carried over to a bulk parameterization in a straightforward way. Quasi-equilibrium of the cloud work function assumes a timescale separation between a slow forcing process and a rapid convective response. But, for the natural bulk analogue to the cloud-work function (the dilute CAPE), the relevant forcing is characterised by a different timescale, and so its quasi-equilibrium entails a different physical constraint. Closures of bulk parameterization that use the non-entraining parcel value of CAPE do not suffer from this timescale issue. However, the Yanai et al. (1973) ansatz must be invoked as a necessary ingredient of those closures.
Resumo:
We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB). The model is based on the PRA framework of gas–particle interactions (P¨oschl et al., 5 2007), and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface 10 concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory stud15 ies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial transport and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (C=C double bonds) can reach chemical lifetimes of 20 multiple hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (10−10 cm2 s−1). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB 25 as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models.
Resumo:
Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles representative of atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant time scales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semisolid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.
Resumo:
Nanoparticles emitted from road traffic are the largest source of respiratory exposure for the general public living in urban areas. It has been suggested that the adverse health effects of airborne particles may scale with the airborne particle number, which if correct, focuses attention on the nanoparticle (less than 100 nm) size range which dominates the number count in urban areas. Urban measurements of particle size distributions have tended to show a broadly similar pattern dominated by a mode centred on 20–30 nm diameter particles emitted by diesel engine exhaust. In this paper we report the results of measurements of particle number concentration and size distribution made in a major London park as well as on the BT Tower, 160 m high. These measurements taken during the REPARTEE project (Regents Park and BT Tower experiment) show a remarkable shift in particle size distributions with major losses of the smallest particle class as particles are advected away from the traffic source. In the Park, the traffic related mode at 20–30 nm diameter is much reduced with a new mode at <10 nm. Size distribution measurements also revealed higher number concentrations of sub-50 nm particles at the BT Tower during days affected by higher turbulence as determined by Doppler Lidar measurements and indicate a loss of nanoparticles from air aged during less turbulent conditions. These results suggest that nanoparticles are lost by evaporation, rather than coagulation processes. The results have major implications for understanding the impacts of traffic-generated particulate matter on human health.
Resumo:
We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KM-GAP) that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KM-GAP is based on the PRA model framework (Pöschl-Rudich-Ammann, 2007), and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modelled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmo- spheric aerosols and clouds. In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at 270 K is close to unity. Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for eðcient probing of specific physical effects and parameters. With regard to oxidative aging of organic aerosol particles, we illustrate how the formation and evaporation of volatile reaction products like nonanal can cause a decrease in the size of oleic acid particles exposed to ozone.
Resumo:
We examine the climate effects of the emissions of near-term climate forcers (NTCFs) from 4 continental regions (East Asia, Europe, North America and South Asia) using radiative forcing from the task force on hemispheric transport of air pollution source-receptor global chemical transport model simulations. These simulations model the transport of 3 aerosol species (sulphate, particulate organic matter and black carbon) and 4 ozone precursors (methane, nitric oxides (NOx), volatile organic compounds and carbon monoxide). From the equilibrium radiative forcing results we calculate global climate metrics, global warming potentials (GWPs) and global temperature change potentials (GTPs) and show how these depend on emission region, and can vary as functions of time. For the aerosol species, the GWP(100) values are −37±12, −46±20, and 350±200 for SO2, POM and BC respectively for the direct effects only. The corresponding GTP(100) values are −5.2±2.4, −6.5±3.5, and 50±33. This analysis is further extended by examining the temperature-change impacts in 4 latitude bands. This shows that the latitudinal pattern of the temperature response to emissions of the NTCFs does not directly follow the pattern of the diagnosed radiative forcing. For instance temperatures in the Arctic latitudes are particularly sensitive to NTCF emissions in the northern mid-latitudes. At the 100-yr time horizon the ARTPs show NOx emissions can have a warming effect in the northern mid and high latitudes, but cooling in the tropics and Southern Hemisphere. The northern mid-latitude temperature response to northern mid-latitude emissions of most NTCFs is approximately twice as large as would be implied by the global average.
Resumo:
A significant desert dust deposition event occurred on Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009, where the deposited dust later appeared as a brown layer in the snow pack. An examination of dust transportation history and analysis of chemical and physical properties of the deposited dust were used to develop a new approach for high-resolution provenancing of dust deposition events recorded in snow pack using multiple independent techniques. A combination of SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived with HYSPLIT model and analysis of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (ca. 100 km) resolution. Dust, deposited on 5 May 2009, originated in the foothills of the Djebel Akhdar in eastern Libya where dust sources were activated by the intrusion of cold air from the Mediterranean Sea and Saharan low pressure system and transported to the Caucasus along the eastern Mediterranean coast, Syria and Turkey. Particles with an average diameter below 8 μm accounted for 90% of the measured particles in the sample with a mean of 3.58 μm, median 2.48 μm and the dominant mode of 0.60 μm. The chemical signature of this long-travelled dust was significantly different from the locally-produced dust and close to that of soils collected in a palaeolake in the source region, in concentrations of hematite and oxides of aluminium, manganese, and magnesium. Potential addition of dust from a secondary source in northern Mesopotamia introduced uncertainty in the provenancing of dust from this event. Nevertheless, the approach adopted here enables other dust horizons in the snowpack to be linked to specific dust transport events recorded in remote sensing and meteorological data archives.
Resumo:
Coastal outflow describes the horizontal advection of pollutants from the continental boundary layer across a coastline into a layer above the marine boundary layer. This process can ventilate polluted continental boundary layers and thus regulate air quality in highly populated coastal regions. This paper investigates the factors controlling coastal outflow and quantifies its importance as a ventilation mechanism. Tracers in the Met Office Unified Model (MetUM) are used to examine the magnitude and variability of coastal outflow over the eastern United States for a 4 week period during summer 2004. Over the 4 week period, ventilation of tracer from the continental boundary layer via coastal outflow occurs with the same magnitude as vertical ventilation via convection and advection. The relative importance of tracer decay rate, cross-coastal advection rate, and a parameter based on the relative continental and marine boundary layer heights, on coastal outflow is assessed by reducing the problem to a time-dependent box-model. The ratio of the advection rate and decay rate is a dimensionless parameter which determines whether tracers are long-lived or short-lived. Long- and short-lived tracers exhibit different behaviours with respect to coastal outflow. For short-lived tracers, increasing the advection rate increases the diurnally averaged magnitude of coastal outflow, but has the opposite effect for very long-lived tracers. Short-lived tracers exhibit large diurnal variability in coastal outflow but long-lived tracers do not. By combining the MetUM and box-model simulations a landwidth is determined which represents the distance inland over which emissions contribute significantly to coastal outflow. A landwidth of between 100 and 400 km is found to be representative for a tracer with a lifetime of 24 h.
Resumo:
Policies to control air quality focus on mitigating emissions of aerosols and their precursors, and other short-lived climate pollutants (SLCPs). On a local scale, these policies will have beneficial impacts on health and crop yields, by reducing particulate matter (PM) and surface ozone concentrations; however, the climate impacts of reducing emissions of SLCPs are less straightforward to predict. In this paper we consider a set of idealised, extreme mitigation strategies, in which the total anthropogenic emissions of individual SLCP emissions species are removed. This provides an upper bound on the potential climate impacts of such air quality strategies. We focus on evaluating the climate responses to changes in anthropogenic emissions of aerosol precursor species: black carbon (BC), organic carbon (OC) and sulphur dioxide (SO2). We perform climate integrations with four fully coupled atmosphere-ocean global climate models (AOGCMs), and examine the effects on global and regional climate of removing the total land-based anthropogenic emissions of each of the three aerosol precursor species. We find that the SO2 emissions reductions lead to the strongest response, with all three models showing an increase in surface temperature focussed in the northern hemisphere high latitudes, and a corresponding increase in global mean precipitation and run-off. Changes in precipitation and run-off patterns are driven mostly by a northward shift in the ITCZ, consistent with the hemispherically asymmetric warming pattern driven by the emissions changes. The BC and OC emissions reductions give a much weaker forcing signal, and there is some disagreement between models in the sign of the climate responses to these perturbations. These differences between models are due largely to natural variability in sea-ice extent, circulation patterns and cloud changes. This large natural variability component to the signal when the ocean circulation and sea-ice are free-running means that the BC and OC mitigation measures do not necessarily lead to a discernible climate response.
Resumo:
A proteína ácida fibrilar glial (GFAP) é uma proteína da classe dos filamentos intermediários, exclusivamente expressa em astrócitos no sistema nervoso central (SNC). A função específica da fosforilação desta proteína é ainda desconhecida. No entanto, tem sido demonstrado que o equilíbrio dinâmico entre o estado fosforilado e desfosforilado de sítios específicos da GFAP pode regular a polimerização e despolimerização dos filamentos intermediários durante eventos de estruturação do citoesqueleto glial. Nosso grupo de pesquisa demonstrou que a fosforilação da GFAP em hipocampo de ratos jovens (P12-P16) é estimulada no mesmo nível por glutamato, via um receptor glutamatérgico metabotrópico do grupo II (mGluR II), e pela ausência de Ca2+ externo (presença de EGTA). Entretanto, o tratamento simultâneo com glutamato e EGTA não resulta em efeito sinergístico, sugerindo um mesmo mecanismo de ação para estas duas situações estimulatórias da fosforilação da GFAP (WofchuK & Rodnight, 1994; Kommers et al., 1999; Rodnight et al., 1997). Este mecanismo provavelmente não envolve reservas intracelulares de Ca2+ associadas a receptores de IP3, uma vez que mGluRs II estão envolvidos com o mecanismo de transdução de sinal via adenilato ciclase e não via hidrólise de fosfoinositídios. Uma hipótese proposta é de que o glutamato, via mGluR, bloqueia canais de Ca2+ tipo L, inibindo uma cascata de desfosforilação dependente de Ca2+, associada a GFAP (Rodnight et al., 1997). Interessantemente, os receptores rianodina (RyRs) presentes nas reservas intracelulares de Ca2+ reguladas por tais receptores estão associados com canais de Ca2+ tipo L (Chavis et al., 1996). Com base nestes dados, buscou-se neste trabalho avaliar se a modulação glutamatérgica da fosforilação da GFAP em fatias de hipocampo de ratos jovens envolve as reservas intracelulares de Ca2+ reguladas por RyRs e se o Ca2+ proveniente destas reservas atua de maneira semelhante ao Ca2+ oriundo do espaço extracelular. Nossos resultados mostraram que há uma evidente participação do Ca2+ proveniente das reservas intracelulares reguladas por RyRs no mecanismo modulatório da fosforilação da GFAP via ativação de mGluRs em fatias de hipocampo de ratos jovens, uma vez que a cafeína e a rianodina (agonistas de RyRs) revertem totalmente o efeito estimulatório do agonista glutamatérgico metabotrópico 1S,3R-ACPD sobre a fosforilação da proteína e este efeito da cafeína é inibido por dantrolene (antagonista de RyRs). Talvez o Ca2+ oriundo das reservas reguladas por RyRs tenha o mesmo papel do Ca2+ proveniente do espaço extracelular, ou seja, desencadeia uma cascata de desfosforilação associada à GFAP mediada pela calcineurina, uma vez que quelando o Ca2+ intracelular livre com BAPTA-AM, após a mobilização destas reservas, tal efeito não ocorre. A participação de receptores adenosina (AdoRs) e do AMP cíclico (AMPc) ainda permanece a ser estudada. Entretanto, é sabido que em ratos jovens a ativação de mGluRs aumenta a formação de AMPc potenciando o efeito de outros tipos de receptores, como os AdoRs e, provavelmente, isto é mediado por um mGluR II (Schoepp & Johnson, 1993; Winder & Conn, 1996). Neste trabalho mostrou-se justamente o possível envolvimento de tais mecanismos de transdução de sinal na modulação da fosforilação da GFAP, pois a adenosina deaminase (enzima que metaboliza adenosina endógena) e a forscolina (agente que estimula a enzima adenilato ciclase) alteraram o nível de fosforilação da GFAP. Estes resultados evidenciam o envolvimento das reservas intracelulares de Ca2+ reguladas por RyRs no mecanismo de transdução de sinal que modula o estado de fosforilação GFAP mediado pela ativação de mGluRs.