115 resultados para synchronie corticale
Resumo:
Le sommeil est un besoin vital et le bon fonctionnement de l’organisme dépend de la quantité et de la qualité du sommeil. Le sommeil est régulé par deux processus : un processus circadien qui dépend de l’activité des noyaux suprachiasmatiques de l’hypothalamus et qui régule le moment durant lequel nous allons dormir, et un processus homéostatique qui dépend de l’activité neuronale et se reflète dans l’intensité du sommeil. En effet, le sommeil dépend de l’éveil qui le précède et plus l’éveil dure longtemps, plus le sommeil est profond tel que mesuré par des marqueurs électroencéphalographiques (EEG). Des études ont montré que le bon fonctionnement de ces deux processus régulateurs du sommeil dépend de la plasticité synaptique. Ainsi, les éléments synaptiques régulant la communication et la force synaptique sont d’importants candidats pour agir sur la physiologie de la régulation du sommeil. Les molécules d’adhésion cellulaire sont des acteurs clés dans les mécanismes de plasticité synaptique. Elles régulent l’activité et la maturation des synapses. Des études ont montré que leur absence engendre des conséquences similaires au manque de sommeil. Le but de ce projet de thèse est d’explorer l’effet de l’absence de deux familles de molécule d’adhésion cellulaire, les neuroligines et la famille des récepteur Eph et leur ligand les éphrines dans les processus régulateurs du sommeil. Notre hypothèse est que l’absence d’un des membres de ces deux familles de molécule affecte les mécanismes impliqués dans le processus homéostatique de régulation du sommeil. Afin de répondre à notre hypothèse, nous avons étudié d’une part l’activité EEG chez des souris mutantes n’exprimant pas Neuroligine‐1 (Nlgn1) ou le récepteur EphA4 en condition normale et après une privation de sommeil. D’autre part, nous avons mesuré les changements moléculaires ayant lieu dans ces deux modèles après privation de sommeil. Au niveau de l’activité EEG, nos résultats montrent que l’absence de Nlgn1 augmente la densité des ondes lentes en condition normale et augment l’amplitude et la pente des ondes lentes après privation de sommeil. Nlgn1 est nécessaire au fonctionnement normal de la synchronie corticale, notamment après une privation de sommeil, lui attribuant ainsi un rôle clé dans l’homéostasie du sommeil. Concernant le récepteur EphA4, son absence affecte la durée du sommeil paradoxal ainsi que l’activité sigma qui dépendent du processus circadien. Nos résultats suggèrent donc que ce récepteur est un élément important dans la régulation circadienne du sommeil. Les changements transcriptionnels en réponse à la privation de sommeil des souris n’exprimant pas Nlgn1 et EphA4 ne sont pas différents des souris sauvages. Toutefois, nous avons montré que la privation de sommeil affectait la distribution des marques épigénétiques sur le génome, tels que la méthylation et l’hydroxyméthylation, et que l’expression des molécules régulant ces changements est modifiée chez les souris mutantes pour le récepteur EphA4. Nos observations mettent en évidence que les molécules d’adhésion cellulaire, Nlgn1 et le récepteur EphA4, possèdent un rôle important dans les processus homéostatique et circadien du sommeil et contribuent de manière différente à la régulation du sommeil.
Resumo:
Le sommeil est un besoin vital et le bon fonctionnement de l’organisme dépend de la quantité et de la qualité du sommeil. Le sommeil est régulé par deux processus : un processus circadien qui dépend de l’activité des noyaux suprachiasmatiques de l’hypothalamus et qui régule le moment durant lequel nous allons dormir, et un processus homéostatique qui dépend de l’activité neuronale et se reflète dans l’intensité du sommeil. En effet, le sommeil dépend de l’éveil qui le précède et plus l’éveil dure longtemps, plus le sommeil est profond tel que mesuré par des marqueurs électroencéphalographiques (EEG). Des études ont montré que le bon fonctionnement de ces deux processus régulateurs du sommeil dépend de la plasticité synaptique. Ainsi, les éléments synaptiques régulant la communication et la force synaptique sont d’importants candidats pour agir sur la physiologie de la régulation du sommeil. Les molécules d’adhésion cellulaire sont des acteurs clés dans les mécanismes de plasticité synaptique. Elles régulent l’activité et la maturation des synapses. Des études ont montré que leur absence engendre des conséquences similaires au manque de sommeil. Le but de ce projet de thèse est d’explorer l’effet de l’absence de deux familles de molécule d’adhésion cellulaire, les neuroligines et la famille des récepteur Eph et leur ligand les éphrines dans les processus régulateurs du sommeil. Notre hypothèse est que l’absence d’un des membres de ces deux familles de molécule affecte les mécanismes impliqués dans le processus homéostatique de régulation du sommeil. Afin de répondre à notre hypothèse, nous avons étudié d’une part l’activité EEG chez des souris mutantes n’exprimant pas Neuroligine‐1 (Nlgn1) ou le récepteur EphA4 en condition normale et après une privation de sommeil. D’autre part, nous avons mesuré les changements moléculaires ayant lieu dans ces deux modèles après privation de sommeil. Au niveau de l’activité EEG, nos résultats montrent que l’absence de Nlgn1 augmente la densité des ondes lentes en condition normale et augment l’amplitude et la pente des ondes lentes après privation de sommeil. Nlgn1 est nécessaire au fonctionnement normal de la synchronie corticale, notamment après une privation de sommeil, lui attribuant ainsi un rôle clé dans l’homéostasie du sommeil. Concernant le récepteur EphA4, son absence affecte la durée du sommeil paradoxal ainsi que l’activité sigma qui dépendent du processus circadien. Nos résultats suggèrent donc que ce récepteur est un élément important dans la régulation circadienne du sommeil. Les changements transcriptionnels en réponse à la privation de sommeil des souris n’exprimant pas Nlgn1 et EphA4 ne sont pas différents des souris sauvages. Toutefois, nous avons montré que la privation de sommeil affectait la distribution des marques épigénétiques sur le génome, tels que la méthylation et l’hydroxyméthylation, et que l’expression des molécules régulant ces changements est modifiée chez les souris mutantes pour le récepteur EphA4. Nos observations mettent en évidence que les molécules d’adhésion cellulaire, Nlgn1 et le récepteur EphA4, possèdent un rôle important dans les processus homéostatique et circadien du sommeil et contribuent de manière différente à la régulation du sommeil.
Resumo:
This article aims to give various examples that illustrate the use of a bipolar and joint perspective – diachronic and synchronic – for the semantic study of certain items of the language. We are initially interested in the adverb carrément, which currently seems to bear little relation to any meaning as an adverb of manner. Nevertheless, the diachronic study shows how the latter stages of its development with respect to its root carré pave the way for its becoming a polyphonic adverb. It is a similar case with apparemment: it has four clear stages of semantic development, each of which is related to the various values of this adverb in synchrony. However what is perhaps even more revealing is the diachronic approach in the case of the delocutive adverbs (diablement, bigrement, fichtrement...), whereby it might be seen that these elements can have no nominal or adjectival base, which is one of the criteria that helps to illustrate their origin.
Resumo:
Le principal rôle du corps calleux est d’assurer le transfert de l’information entre les hémisphères cérébraux. Du support empirique pour cette fonction provient d’études investiguant la communication interhémisphérique chez les individus à cerveau divisé (ICD). Des paradigmes expérimentaux exigeant une intégration interhémisphérique de l’information permettent de documenter certains signes de déconnexion calleuse chez ces individus. La présente thèse a investigué le transfert de l’information sous-tendant les phénomènes de gain de redondance (GR), de différence croisé– non-croisé (DCNC) et d’asynchronie bimanuelle chez les ICD et les individus normaux, et a ainsi contribué à préciser le rôle du corps calleux. Une première étude a comparé le GR des individus normaux et des ICD ayant subi une section partielle ou totale du corps calleux. Dans une tâche de détection, le GR consiste en la réduction des temps de réaction (TR) lorsque deux stimuli sont présentés plutôt qu’un seul. Typiquement, les ICD présentent un GR beaucoup plus grand (supra-GR) que celui des individus normaux (Reuter-Lorenz, Nozawa, Gazzaniga, & Hughes, 1995). Afin d’investiguer les conditions d’occurrence du supra-GR, nous avons évalué le GR en présentation interhémisphérique, intrahémisphérique et sur le méridien vertical, ainsi qu’avec des stimuli requérant une contribution corticale différente (luminance, couleur équiluminante ou mouvement). La présence d’un supra-GR chez les ICD partiels et totaux en comparaison avec celui des individus normaux a été confirmée. Ceci suggère qu’une section antérieure du corps calleux, qui perturbe le transfert d’informations de nature motrice/décisionnelle, est suffisante pour produire un supra-GR chez les ICD. Nos données permettent aussi d’affirmer que, contrairement au GR des individus normaux, celui des ICD totaux est sensible aux manipulations sensorielles. Nous concluons donc que le supra-GR des ICD est à la fois attribuable à des contributions sensorielles et motrices/décisionnelles. Une deuxième étude a investigué la DCNC et l’asynchronie bimanuelle chez les ICD et les individus normaux. La DCNC réfère à la soustraction des TR empruntant une voie anatomique « non-croisée » aux TR empruntant une voie anatomique « croisée », fournissant ainsi une estimation du temps de transfert interhémisphérique. Dans le contexte de notre étude, l’asynchronie bimanuelle réfère à la différence de TR entre la main gauche et la main droite, sans égard à l’hémichamp de présentation. Les effets de manipulations sensorielles et attentionnelles ont été évalués pour les deux mesures. Cette étude a permis d’établir une dissociation entre la DCNC et l’asynchronie bimanuelle. Précisément, les ICD totaux, mais non les ICD partiels, ont montré une DCNC significativement plus grande que celle des individus normaux, alors que les deux groupes d’ICD se sont montrés plus asynchrones que les individus normaux. Nous postulons donc que des processus indépendants sous-tendent la DCNC et la synchronie bimanuelle. De plus, en raison de la modulation parallèle du GR et de l’asynchronie bimanuelle entre les groupes, nous suggérons qu’un processus conjoint sous-tend ces deux mesures.
Resumo:
Les systèmes sensoriels encodent l’information sur notre environnement sous la forme d’impulsions électriques qui se propagent dans des réseaux de neurones. Élucider le code neuronal – les principes par lesquels l’information est représentée dans l’activité des neurones – est une question fondamentale des neurosciences. Cette thèse constituée de 3 études (E) s’intéresse à deux types de codes, la synchronisation et l’adaptation, dans les neurones du cortex visuel primaire (V1) du chat. Au niveau de V1, les neurones sont sélectifs pour des propriétés comme l’orientation des contours, la direction et la vitesse du mouvement. Chaque neurone ayant une combinaison de propriétés pour laquelle sa réponse est maximale, l’information se retrouve distribuée dans différents neurones situés dans diverses colonnes et aires corticales. Un mécanisme potentiel pour relier l’activité de neurones répondant à des items eux-mêmes reliés (e.g. deux contours appartenant au même objet) est la synchronisation de leur activité. Cependant, le type de relations potentiellement encodées par la synchronisation n’est pas entièrement clair (E1). Une autre stratégie de codage consiste en des changements transitoires des propriétés de réponse des neurones en fonction de l’environnement (adaptation). Cette plasticité est présente chez le chat adulte, les neurones de V1 changeant d’orientation préférée après exposition à une orientation non préférée. Cependant, on ignore si des neurones spatialement proches exhibent une plasticité comparable (E2). Finalement, nous avons étudié la dynamique de la relation entre synchronisation et plasticité des propriétés de réponse (E3). Résultats principaux — (E1) Nous avons montré que deux stimuli en mouvement soit convergent soit divergent élicitent plus de synchronisation entre les neurones de V1 que deux stimuli avec la même direction. La fréquence de décharge n’était en revanche pas différente en fonction du type de stimulus. Dans ce cas, la synchronisation semble coder pour la relation de cocircularité dont le mouvement convergent (centripète) et divergent (centrifuge) sont deux cas particuliers, et ainsi pourrait jouer un rôle dans l’intégration des contours. Cela indique que la synchronisation code pour une information qui n’est pas présente dans la fréquence de décharge des neurones. (E2) Après exposition à une orientation non préférée, les neurones changent d’orientation préférée dans la même direction que leurs voisins dans 75% des cas. Plusieurs propriétés de réponse des neurones de V1 dépendent de leur localisation dans la carte fonctionnelle corticale pour l’orientation. Les comportements plus diversifiés des 25% de neurones restants sont le fait de différences fonctionnelles que nous avons observé et qui suggèrent une localisation corticale particulière, les singularités, tandis que la majorité des neurones semblent situés dans les domaines d’iso-orientation. (E3) Après adaptation, les paires de neurones dont les propriétés de réponse deviennent plus similaires montrent une synchronisation accrue. Après récupération, la synchronisation retourne à son niveau initial. Par conséquent, la synchronisation semble refléter de façon dynamique la similarité des propriétés de réponse des neurones. Conclusions — Cette thèse contribue à notre connaissance des capacités d’adaptation de notre système visuel à un environnement changeant. Nous proposons également des données originales liées au rôle potentiel de la synchronisation. En particulier, la synchronisation semble capable de coder des relations entre objets similaires ou dissimilaires, suggérant l’existence d’assemblées neuronales superposées.
Resumo:
L'activité cérébrale, reliée spécifiquement à la rétention d'information en mémoire à court-terme tactile, a été investiguée à l'aide de l'enregistrement des champs magnétiques produits par l'activité neuronale générée durant la période de rétention par une tâche de mémoire tactile. Une, deux, trois ou quatre positions, sur une possibilité de huit sur les phalangines et les phalangettes, de la main gauche ou droite, lors de blocs d'essai différents, ont été stimulées simultanément. Le patron de stimulation tactile devait être retenu pendant 1800 ms avant d'être comparé avec un patron test qui était, soit identique, soit différent par une seule position. Nos analyses se sont concentrées sur les régions du cerveau qui montraient une augmentation monotone du niveau d'activité soutenu durant la période de rétention pour un nombre croissant de positions à retenir dans le patron de stimulation. Ces régions ont plus de chance de participer à la rétention active de l'information à maintenir en mémoire à court-terme tactile. Le gyrus cingulaire (BA32), le gyrus frontal supérieur droit (BA 8), le precuneus gauche (BA 7, 19), le gyrus postcentral gauche (BA 7), le gyrus precentral droit (BA 6), le gyrus frontal supérieur gauche (BA 6) et le lobule pariétal inférieur droit (BA 40) semblent tous impliqués dans un réseau mnésique qui maintient les informations sensorielles tactiles dans un système de mémoire à court-terme spécialisé pour l'information tactile.
Resumo:
Dans le cortex visuel des mammifères, une cellule à panier (BC) qui représente un sous-type majoritaire d’interneurones GABAergiques, innerve une centaine de neurones par une multitude de synapses localisées sur le soma et sur les dendrites proximales de chacune de ses cibles. De plus, ces cellules sont importantes pour la génération des rythmes gammas, qui régulent de nombreuses fonctions cognitives, et pour la régulation de la plasticité corticale. Bien que la fonction des BC au sein des réseaux corticaux est à l'étude, les mécanismes qui contrôlent le développement de leur arborisation complexe ainsi que de leurs nombreux contacts synaptiques n’ont pas été entièrement déterminés. En utilisant les récepteurs allatostatines couplés aux protéines G de la drosophile (AlstR), nous démontrons in vitro que la réduction de l'excitation ainsi que la réduction de la libération des neurotransmetteurs par les BCs corticales individuelles des souris, diminuent le nombre de cellules innervées sans modifier le patron d'innervation périsomatique, durant et après la phase de prolifération des synapses périsomatiques. Inversement, lors de la suppression complète de la libération des neurotransmetteurs par les BCs individuelles avec l’utilisation de la chaîne légère de la toxine tétanus, nous observons des effets contraires selon le stade de développement. Les BCs exprimant TeNT-Lc pendant la phase de prolifération sont caractérisées par des arborisations axonales plus denses et un nombre accru de petits boutons homogènes autour des somas innervés. Toutefois, les cellules transfectées avec TeNT-Lc après la phase de la prolifération forment une innervation périsomatique avec moins de branchements terminaux d’axones et un nombre réduit de boutons avec une taille irrégulière autour des somas innervés. Nos résultats révèlent le rôle spécifique des niveaux de l’activité neuronale et de la neurotransmission dans l'établissement du territoire synaptique des cellules GABAergiques corticaux. Le facteur neurotrophique dérivé du cerveau (BDNF) est un modulateur puissant de la maturation activité-dépendante des synapses GABAergiques. Grâce à l'activation et à la signalisation de son récepteur tyrosine kinase B (TrkB), la liaison de mBDNF module fortement la prolifération des synapses périsomatiques GABAergiques formés par les BCs. Par contre, le rôle du récepteur neurotrophique de faible affinité, p75NTR, dans le développement du territoire synaptique des cellules reste encore inconnu. Dans ce projet, nous démontrons que la suppression de p75NTR au niveau des BCs individuelles in vitro provenant de souris p75NTRlox induit la formation d'une innervation périsomatique exubérante. BDNF est synthétisé sous une forme précurseur, proBDNF, qui est par la suite clivée par des enzymes, y compris la plasmine activée par tPA, pour produire une forme mature de BDNF (m)BDNF. mBDNF et proBDNF se lient avec une forte affinité à TrkB et p75NTR, respectivement. Nos résultats démontrent qu’un traitement des cultures organotypiques avec la forme résistante au clivage de proBDNF (mut-proBDNF) réduit fortement le territoire synaptique des BCs. Les cultures traitées avec le peptide PPACK, qui inactive tPA, ou avec tPA altèrent et favorisent respectivement la maturation de l’innervation synaptique des BCs. Nous démontrons aussi que l’innervation exubérante formée par les BCs p75NTR-/- n’est pas affectée par un traitement avec mut-proBDNF. L’ensemble de ces résultats suggère que l'activation de p75NTR via proBDNF régule négativement le territoire synaptique des BCs corticaux. Nous avons ensuite examiné si mut-proBDNF affecte l’innervation périsomatique formée par les BCs in vivo, chez la souris adulte. Nous avons constaté que les boutons GABAergiques périsomatiques sont significativement diminués dans le cortex infusé avec mut-proBDNF par rapport à l’hémisphère non-infusé ou traité avec de la saline. En outre, la plasticité de la dominance oculaire (OD) est rétablie par ce traitement chez la souris adulte. Enfin, en utilisant des souris qui ne possèdent pas le récepteur p75NTR dans leurs BCs spécifiquement, nous avons démontré que l'activation de p75NTR via proBDNF est nécessaire pour induire la plasticité de la OD chez les souris adultes. L’ensemble de ces résultats démontre un rôle critique de l'activation de p75NTR dans la régulation et le maintien de la connectivité des circuits GABAergiques, qui commencent lors du développement postnatal précoce jusqu’à l'âge adulte. De plus, nous suggérons que l'activation contrôlée de p75NTR pourrait être un outil utile pour restaurer la plasticité dans le cortex adulte.
Resumo:
The main aim of this thesis is strongly interdisciplinary: it involves and presumes a knowledge on Neurophysiology, to understand the mechanisms that undergo the studied phenomena, a knowledge and experience on Electronics, necessary during the hardware experimental set-up to acquire neuronal data, on Informatics and programming to write the code necessary to control the behaviours of the subjects during experiments and the visual presentation of stimuli. At last, neuronal and statistical models should be well known to help in interpreting data. The project started with an accurate bibliographic research: until now the mechanism of perception of heading (or direction of motion) are still poorly known. The main interest is to understand how the integration of visual information relative to our motion with eye position information happens. To investigate the cortical response to visual stimuli in motion and the integration with eye position, we decided to study an animal model, using Optic Flow expansion and contraction as visual stimuli. In the first chapter of the thesis, the basic aims of the research project are presented, together with the reasons why it’s interesting and important to study perception of motion. Moreover, this chapter describes the methods my research group thought to be more adequate to contribute to scientific community and underlines my personal contribute to the project. The second chapter presents an overview on useful knowledge to follow the main part of the thesis: it starts with a brief introduction on central nervous system, on cortical functions, then it presents more deeply associations areas, which are the main target of our study. Furthermore, it tries to explain why studies on animal models are necessary to understand mechanism at a cellular level, that could not be addressed on any other way. In the second part of the chapter, basics on electrophysiology and cellular communication are presented, together with traditional neuronal data analysis methods. The third chapter is intended to be a helpful resource for future works in the laboratory: it presents the hardware used for experimental sessions, how to control animal behaviour during the experiments by means of C routines and a software, and how to present visual stimuli on a screen. The forth chapter is the main core of the research project and the thesis. In the methods, experimental paradigms, visual stimuli and data analysis are presented. In the results, cellular response of area PEc to visual stimuli in motion combined with different eye positions are shown. In brief, this study led to the identification of different cellular behaviour in relation to focus of expansion (the direction of motion given by the optic flow pattern) and eye position. The originality and importance of the results are pointed out in the conclusions: this is the first study aimed to investigate perception of motion in this particular cortical area. In the last paragraph, a neuronal network model is presented: the aim is simulating cellular pre-saccadic and post-saccadic response of neuron in area PEc, during eye movement tasks. The same data presented in chapter four, are further analysed in chapter fifth. The analysis started from the observation of the neuronal responses during 1s time period in which the visual stimulation was the same. It was clear that cells activities showed oscillations in time, that had been neglected by the previous analysis based on mean firing frequency. Results distinguished two cellular behaviour by their response characteristics: some neurons showed oscillations that changed depending on eye and optic flow position, while others kept the same oscillations characteristics independent of the stimulus. The last chapter discusses the results of the research project, comments the originality and interdisciplinary of the study and proposes some future developments.
Resumo:
Nel presente elaborato viene descritta l’attività di tesi da me svolta presso il Laboratorio di Tecnologia Medica presente all’interno dell’Istituto Ortopedico Rizzoli. Nel laboratorio è in corso di svolgimento uno studio mirato a correlare le proprietà meccaniche del tessuto osseo corticale con la qualità e la distribuzione delle fibre di collagene per verificare se tali caratteristiche siano influenzate dal tipo di sollecitazione a cui il tessuto si trova sottoposto fisiologicamente. All’interno di tale studio si inserisce il mio lavoro il cui obiettivo è di progettare ed implementare un protocollo per la caratterizzazione meccanica del tessuto osseo corticale. Il distretto anatomico studiato è il femore prossimale. Infatti è dimostrato come in tale zona il tessuto osseo corticale risulti sollecitato in vivo a compressione in posizione mediale e a trazione in posizione laterale. Per eseguire lo studio è stato deciso di utilizzare una prova di trazione semplice in modo da poter ricavare il contributo del collagene, su provini orientati longitudinalmente all’asse del femore. Nella prima parte del lavoro ho perciò progettato l’esperimento stabilendo la geometria dei provini e la procedura sperimentale necessaria alla loro estrazione. Successivamente ho progettato e realizzato il sistema di applicazione del carico coerentemente con il posizionamento dei sistemi di misura. In particolare per la misura delle deformazioni imposte al provino ho utilizzato sia un sistema meccanico che un sistema ottico basato sulla correlazione digitale di immagine. Quest’ultimo sistema permette di elaborare una mappa degli spostamenti e delle deformazioni su tutta la superficie del provino visibile dalle telecamere, purchè adeguatamente preparata per la misura con sistema ottico. La preparazione prevede la realizzazione di un pattern stocastico ad elevato contrasto sulla superficie. L’analisi dei risultati, oltre a verificare il corretto svolgimento della prova, ha evidenziato come siano presenti differenze significative tra le proprietà meccaniche di ciascun soggetto ad eccezione del tasso di deformazione necessario per imporre al provino una deformazione permanente pari allo 0.2%. Infatti tale parametro risulta invariante. È stato rilevato inoltre come non siano presenti differenze significative tra le proprietà meccaniche del tessuto estratto in zone differenti nonostante sia sollecitato fisiologicamente principalmente con sollecitazioni differenti.
Resumo:
In dieser Studie wurde anhand des Modells der Ratte das Gleichgewichtssystem auf cerebro-corticaler Ebene untersucht, und das Verhalten des Gehirns nach akuten sowie chronischen Ausfällen mit funktioneller Bildgebung untersucht. rnMit der Positronen-Emissions-Tomographie (PET) kann die Metabolismusrate bestimmter Gehirnareale gemessen werden. Narkotisierte Tiere wurden unter galvanischer vestibulärer Stimulation im PET gemessen und die Ergebnisse wurden mit Kontrollstimulations-Messungen verglichen. Es konnten verschiedene Areale, die eine erhöhte Stoffwechselaktivität aufwiesen, ermittelt werden. Dazu gehören der somatosensorische und der insuläre Cortex, Teile des auditorischen Cortexes, der anteriore cinguläre sowie der entorhinale Cortex. Subcorticale Strukturen wie der Hippocampus, die Amygdala sowie die latero-dorsalen thalamischen Kerne wiesen ebenfalls erhöhten Stoffwechsel unter vestibulärer Stimulation auf. rnBei dieser PET-Studie handelt es sich um die erste funktionell-bildgebende Studie, die Verarbeitung vestibulärer Informationen bei Ratten in vivo darstellt. Die anatomische Verbindung der gefundenen Areale wurde mit anterograden und retrograden neuronalen Tracings unterstützt. rnDarüber hinaus wurde markiertes Gewebe, welches die Verbindung zwischen thalamischen und cerebro-corticalen Kernen der vestibulären Verschaltung aufweist, immunhistochemisch auf dessen Neurotransmission hin untersucht. Das katecholaminergen und dem opioidergen System wurde untersucht. Eine Beteiligung katecholaminerger Transmitter konnte nicht nachgewiesen werden. Neurone im somatosensorischen Cortex, die positiv auf einen Opioid-Rezeptor-Antikörper getestet wurden erhalten anterograd markierte Terminale aus dem thalamischen Kern LDDM, der mittels der PET als vestibulär identifiziert werden konnte. rnBasierend auf den Ergebnissen der ersten bildgebenden Studie wurde in einer zweiten funktionell-bildgebenden Studie die zentral-vestibuläre Verschaltung unterbrochen, indem relevante thalamische Kerngebiete (LDDM, LDVL) elektrolytisch zerstört wurden. Die Stoffwechselaktivität wurde anschließend bei diesen Tieren an verschiedenen Zeitpunkten nach der Läsion im PET unter vestibulärer Stimulation gemessen. Die Stoffwechselaktivität dieser Tiere wurde mit der Stoffwechselaktivität von Kontroll-Tieren verglichen. rnBei dieser Studie wurde zum ersten Mal, mittels funktioneller Bildgebung gezeigt, welche Bereiche des Gehirns nach akuter und chronischer Läsion des vestibulären Systems an Kompensationsmechanismen beteiligt sind. Alle Gehirnareale, die in verschiedenen Zeitfenstern (1, 3, 7 und 20 Tage nach Läsion) erhöhten Metabolismus aufweisen, sind Teil der vestibulären Verschaltung. Es handelt sich dabei um Areale der Okulomotorik und des räumlichen Gedächtnisses: das Postsubiculum, den Colliculus superior, das mediale Corpus geniculatum, den entorhinalen Cortex sowie die Zona incerta.rn