892 resultados para symbolic solving
Resumo:
An algorithm is produced for the symbolic solving of systems of partial differential equations by means of multivariate Laplace–Carson transform. A system of K equations with M as the greatest order of partial derivatives and right-hand parts of a special type is considered. Initial conditions are input. As a result of a Laplace–Carson transform of the system according to initial condition we obtain an algebraic system of equations. A method to obtain compatibility conditions is discussed.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
Les restriccions reals quantificades (QRC) formen un formalisme matemàtic utilitzat per modelar un gran nombre de problemes físics dins els quals intervenen sistemes d'equacions no-lineals sobre variables reals, algunes de les quals podent ésser quantificades. Els QRCs apareixen en nombrosos contextos, com l'Enginyeria de Control o la Biologia. La resolució de QRCs és un domini de recerca molt actiu dins el qual es proposen dos enfocaments diferents: l'eliminació simbòlica de quantificadors i els mètodes aproximatius. Tot i això, la resolució de problemes de grans dimensions i del cas general, resten encara problemes oberts. Aquesta tesi proposa una nova metodologia aproximativa basada en l'Anàlisi Intervalar Modal, una teoria matemàtica que permet resoldre problemes en els quals intervenen quantificadors lògics sobre variables reals. Finalment, dues aplicacions a l'Enginyeria de Control són presentades. La primera fa referència al problema de detecció de fallades i la segona consisteix en un controlador per a un vaixell a vela.
Resumo:
Os sistemas biológicos são surpreendentemente flexíveis pra processar informação proveniente do mundo real. Alguns organismos biológicos possuem uma unidade central de processamento denominada de cérebro. O cérebro humano consiste de 10(11) neurônios e realiza processamento inteligente de forma exata e subjetiva. A Inteligência Artificial (IA) tenta trazer para o mundo da computação digital a heurística dos sistemas biológicos de várias maneiras, mas, ainda resta muito para que isso seja concretizado. No entanto, algumas técnicas como Redes neurais artificiais e lógica fuzzy tem mostrado efetivas para resolver problemas complexos usando a heurística dos sistemas biológicos. Recentemente o numero de aplicação dos métodos da IA em sistemas zootécnicos tem aumentado significativamente. O objetivo deste artigo é explicar os princípios básicos da resolução de problemas usando heurística e demonstrar como a IA pode ser aplicada para construir um sistema especialista para resolver problemas na área de zootecnia.
Resumo:
Lellis-Santos C, Giannocco G, Nunes MT. The case of thyroid hormones: how to learn physiology by solving a detective case. Adv Physiol Educ 35: 219-226, 2011; doi:10.1152/advan.00135.2010.Thyroid diseases are prevalent among endocrine disorders, and careful evaluation of patients' symptoms is a very important part in their diagnosis. Developing new pedagogical strategies, such as problem-based learning (PBL), is extremely important to stimulate and encourage medical and biomedical students to learn thyroid physiology and identify the signs and symptoms of thyroid dysfunction. The present study aimed to create a new pedagogical approach to build deep knowledge about hypo-/hyperthyroidism by proposing a hands-on activity based on a detective case, using alternative materials in place of laboratory animals. After receiving a description of a criminal story involving changes in thyroid hormone economy, students collected data from clues, such as body weight, mesenteric vascularization, visceral fat, heart and thyroid size, heart rate, and thyroid-stimulating hormone serum concentration to solve the case. Nevertheless, there was one missing clue for each panel of data. Four different materials were proposed to perform the same practical lesson. Animals, pictures, small stuffed toy rats, and illustrations were all effective to promote learning, and the detective case context was considered by students as inviting and stimulating. The activity can be easily performed independently of the institution's purchasing power. The practical lesson stimulated the scientific method of data collection and organization, discussion, and review of thyroid hormone actions to solve the case. Hence, this activity provides a new strategy and alternative materials to teach without animal euthanization.
Resumo:
An approximate analytical technique employing a finite integral transform is developed to solve the reaction diffusion problem with Michaelis-Menten kinetics in a solid of general shape. A simple infinite series solution for the substrate concentration is obtained as a function of the Thiele modulus, modified Sherwood number, and Michaelis constant. An iteration scheme is developed to bring the approximate solution closer to the exact solution. Comparison with the known exact solutions for slab geometry (quadrature) and numerically exact solutions for spherical geometry (orthogonal collocation) shows excellent agreement for all values of the Thiele modulus and Michaelis constant.
Resumo:
A modified formula for the integral transform of a nonlinear function is proposed for a class of nonlinear boundary value problems. The technique presented in this paper results in analytical solutions. Iterations and initial guess, which are needed in other techniques, are not required in this novel technique. The analytical solutions are found to agree surprisingly well with the numerically exact solutions for two examples of power law reaction and Langmuir-Hinshelwood reaction in a catalyst pellet.
Resumo:
A robust semi-implicit central partial difference algorithm for the numerical solution of coupled stochastic parabolic partial differential equations (PDEs) is described. This can be used for calculating correlation functions of systems of interacting stochastic fields. Such field equations can arise in the description of Hamiltonian and open systems in the physics of nonlinear processes, and may include multiplicative noise sources. The algorithm can be used for studying the properties of nonlinear quantum or classical field theories. The general approach is outlined and applied to a specific example, namely the quantum statistical fluctuations of ultra-short optical pulses in chi((2)) parametric waveguides. This example uses a non-diagonal coherent state representation, and correctly predicts the sub-shot noise level spectral fluctuations observed in homodyne detection measurements. It is expected that the methods used wilt be applicable for higher-order correlation functions and other physical problems as well. A stochastic differencing technique for reducing sampling errors is also introduced. This involves solving nonlinear stochastic parabolic PDEs in combination with a reference process, which uses the Wigner representation in the example presented here. A computer implementation on MIMD parallel architectures is discussed. (C) 1997 Academic Press.
Resumo:
In this study, the effectiveness of a group-based attention and problem solving (APS) treatment approach to executive impairments in patients with frontal lobe lesions was investigated. Thirty participants with lesions in the frontal lobes, 16 with left frontal (LF) and 14 with right frontal (RF) lesions, were allocated into three groups, each with 10 participants. The APS treatment was initially compared to two other control conditions, an information/education (IE) approach and treatment-as-usual or traditional rehabilitation (TR), with each of the control groups subsequently receiving the APS intervention in a crossover design. This design allowed for an evaluation of the treatment through assessment before and after treatment and on follow up, six months later. There was an improvement on some executive and functional measures after the implementation of the APS programme in the three groups. Size, and to a lesser extent laterality, of lesion affected baseline performance on measures of executive function, but there was no apparent relationship between size, laterality or site of lesion and level of benefit from the treatment intervention. The results were discussed in terms of models of executive functioning and the effectiveness of domain specific interventions in the rehabilitation of executive dysfunction.
Resumo:
Objective To evaluate the influence of oral contraceptives (OCs) containing 20 mu mu g ethinylestradiol (EE) and 150 mu mu g gestodene (GEST) on the autonomic modulation of heart rate (HR) in women. Methods One-hundred and fifty-five women aged 24 +/-+/- 2 years were divided into four groups according to their physical activity and the use or not of an OC: active-OC, active-non-OC (NOC), sedentary-OC, and sedentary-NOC. The heart rate was registered in real time based on the electrocardiogram signal for 15 minutes, in the supine-position. The heart rate variability (HRV) was analysed using Shannon`s entropy (SE), conditional entropy (complexity index [CInd] and normalised CInd [NCI]), and symbolic analysis (0V%, 1V%, 2LV%, and 2ULV%). For statistical analysis the Kruskal-Wallis test with Dunn post hoc and the Wilcoxon test (p < 0.05 was considered significant) were applied. Results Treatment with this COC caused no significant changes in SE, CInd, NCI, or symbolic analysis in either active or sedentary groups. Active groups presented higher values for SE and 2ULV%, and lower values for 0V% when compared to sedentary groups (p < 0.05). Conclusion HRV patterns differed depending on life style; the non-linear method applied was highly reliable for identifying these changes. The use of OCs containing 20 mu mu g EE and 150 mu mu g GEST does not influence HR autonomic modulation.
Resumo:
Computer assisted learning has an important role in the teaching of pharmacokinetics to health sciences students because it transfers the emphasis from the purely mathematical domain to an 'experiential' domain in which graphical and symbolic representations of actions and their consequences form the major focus for learning. Basic pharmacokinetic concepts can be taught by experimenting with the interplay between dose and dosage interval with drug absorption (e.g. absorption rate, bioavailability), drug distribution (e.g. volume of distribution, protein binding) and drug elimination (e.g. clearance) on drug concentrations using library ('canned') pharmacokinetic models. Such 'what if' approaches are found in calculator-simulators such as PharmaCalc, Practical Pharmacokinetics and PK Solutions. Others such as SAAM II, ModelMaker, and Stella represent the 'systems dynamics' genre, which requires the user to conceptualise a problem and formulate the model on-screen using symbols, icons, and directional arrows. The choice of software should be determined by the aims of the subject/course, the experience and background of the students in pharmacokinetics, and institutional factors including price and networking capabilities of the package(s). Enhanced learning may result if the computer teaching of pharmacokinetics is supported by tutorials, especially where the techniques are applied to solving problems in which the link with healthcare practices is clearly established.