968 resultados para symbiotic nitrogen fixation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Of the approximately 380 families of angiosperms, representatives of only 10 are known to form symbiotic associations with nitrogen-fixing bacteria in root nodules. The morphologically based classification schemes proposed by taxonomists suggest that many of these 10 families of plants are only distantly related, engendering the hypothesis that the capacity to fix nitrogen evolved independently several, if not many, times. This has in turn influenced attitudes toward the likelihood of transferring genes responsible for symbiotic nitrogen fixation to crop species lacking this ability. Phylogenetic analysis of DNA sequences for the chloroplast gene rbcL indicates, however, that representatives of all 10 families with nitrogen-fixing symbioses occur together, with several families lacking this association, in a single clade. This study therefore indicates that only one lineage of closely related taxa achieved the underlying genetic architecture necessary for symbiotic nitrogen fixation in root nodules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological reduction of atmospheric N-2 to ammonium (nitrogen fixation) provides about 65% of the biosphere's available nitrogen. Most of this ammonium is contributed by legume rhizobia symbioses(1), which are initiated by the infection of legume hosts by bacteria (rhizobia), resulting in formation of root nodules. Within the nodules, rhizobia are found as bacteroids, which perform the nitrogen fixation: to do this, they obtain sources of carbon and energy from the plant, in the form of dicarboxylic acids(2,3). It has been thought that, in return, bacteroids simply provide the plant with ammonium. But here we show that a more complex amino-acid cycle is essential for symbiotic nitrogen fixation by Rhizobium in pea nodules. The plant provides amino acids to the bacteroids, enabling them to shut down their ammonium assimilation. In return, bacteroids act like plant organelles to cycle amino acids back to the plant for asparagine synthesis. The mutual dependence of this exchange prevents the symbiosis being dominated by the plant, and provides a selective pressure for the evolution of mutualism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The slow-growing genus Bradyrhizobium is biologically important in soils, with different representatives found to perform a range of biochemical functions including photosynthesis, induction of root nodules and symbiotic nitrogen fixation and denitrification. Consequently, the role of the genus in soil ecology and biogeochemical transformations is of agricultural and environmental significance. Some isolates of Bradyrhizobium have been shown to be non-symbiotic and do not possess the ability to form nodules. Here we present the genome and gene annotations of two such free-living Bradyrhizobium isolates, named G22 and BF49, from soils with differing long-term management regimes (grassland and bare fallow respectively) in addition to carbon metabolism analysis. These Bradyrhizobium isolates are the first to be isolated and sequenced from European soil and are the first free-living Bradyrhizobium isolates, lacking both nodulation and nitrogen fixation genes, to have their genomes sequenced and assembled from cultured samples. The G22 and BF49 genomes are distinctly different with respect to size and number of genes; the grassland isolate also contains a plasmid. There are also a number of functional differences between these isolates and other published genomes, suggesting that this ubiquitous genus is extremely heterogeneous and has roles within the community not including symbiotic nitrogen fixation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through increases in net primary production (NPP), elevated CO2 is hypothesizes to increase the amount of plant litter entering the soil. The fate of this extra carbon on the forest floor or in mineral soil is currently not clear. Moreover, increased rates of NPP can be maintained only if forests can escape nitrogen limitation. In a Free atmospheric CO2 Enrichment (FACE) experiment near Bangor, Wales, 4 ambient CO2 and 4 FACE plots were planted with patches of Betula pendula, Alnus glutinosa and Fagus sylvatica on a former arable field. Four years after establishment, only a shallow L forest floor litter layer had formed due to intensive bioturbation. Total soil C and N contents increased irrespective of treatment and species as a result of afforestation. We could not detect an additional C sink in the soil, nor were soil C stabilization processes affected by FACE. We observed a decrease of leaf N content in Betula and Alnus under FACE, while the soil C/N ratio decreased regardless of CO2 treatment. The ratio of N taken up from the soil and by N2-fixation in Alnus was not affected by FACE. We infer that increased nitrogen use efficiency is the mechanism by which increased NPP is sustained under elevated CO2 at this site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several bradyrhizobial isolates from L. mariae-josephae root nodules [1] contain a type III secretion system (T3SS) within a cluster of about 30 genes. Among those genes, ttsI codes for the transcriptional activator of the system. Mutation of ttsI resulted in the formation of white, non-fixing nodules with the natural legume host, L. mariae-josephae. The T3SS cluster also contains a gene coding for a NopE-like protein. NopE proteins have been demonstrated to be effectors in the Bradyrhizobium-soybean symbiosis [2] and belong to a small group of poorly characterized proteins from plant-associated bacteria that contain one or two autocleavage motifs known as DUF1521 (Schirrmeister et al. 2011). The amino acid sequence of a NopE-like protein in the L. mariae-josephae strain LmjC contains just one autocatalytic motif. This is unlike NopE1 and NopE2 proteins secreted by the T3SS of B. japonicum, that contain two motifs [3]. The autocleavage of LmjC NopE protein was analyzed after expression in E. coli and purification. Two protein fragments of the predicted sizes appeared in the presence of Ca2+, Cu2+, Cd2+, Zn2+ and Mn2+ cations. In contrast, autocleavage did not take place in the presence of Ni2+, Co2+ or Mg2+. Site-directed mutagenesis of the DUF1521 motif in LmjC NopE abolished self-cleavage in vitro. Symbiotic competence of a NopE- mutant with the L. mariae-josephae host was not affected. Possible roles of NopE are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inoculation of legumes with rhizobia is fundamental to sustainable productivity of Australian agriculture. The National Rhizobium Program has specific aims of sustaining and increasing Nitrogen fixation by legumes in Australian agriculture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project encompasses laboratory, glasshouse and field research to improve N fixation in grain and forage legumes in the northern region and assess compatability of rhizobial strains with current and new legume varieties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mulberry leaves were shown to harbour substantial populations of bacteria, streptomycetes, yeasts, and moulds. Azotobacter and Beijerinckia were observed to contribute to nearly 5 to 10 per cent of the bacterial population. When grown in water culture under sterile conditions, Azotobacter inoculation on the leaf or root surface was found to increase plant growth, dry wt, and nitrogen content of the mulberry. The beneficial effect of Azotobacter was largely influenced by the presence of a carbon source in the plant nutrient solution. The root inoculation in comparison to leaf application was found to confer greater benefits to the growing plant. The presence of carbohydrates and amino acids in the leaf leachates of mulberry was shown. The mutual beneficial nature of the association of the plant and Azotobacter has been brought to light.

Relevância:

100.00% 100.00%

Publicador: