978 resultados para sybr green fluorescence assay


Relevância:

100.00% 100.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are single-stranded non-coding RNAs that negatively regulate target gene expression through mRNA cleavage or translational repression. There is mounting evidence that they play critical roles in heart disease. The expression of known miRNAs in the heart has been studied at length by microarray and quantitative PCR but it is becoming evident that microRNA isoforms (isomiRs) are potentially physiologically important. It is well known that left ventricular (patho)physiology is influenced by transmural heterogeneity of cardiomyocyte phenotype, and this likely reflects underlying heterogeneity of gene expression. Given the significant role of miRNAs in regulating gene expression, knowledge of how the miRNA profile varies across the ventricular wall will be crucial to better understand the mechanisms governing transmural physiological heterogeneity. To determinine miRNA/isomiR expression profiles in the rat heart we investigated tissue from different locations across the left ventricular wall using deep sequencing. We detected significant quantities of 145 known rat miRNAs and 68 potential novel orthologs of known miRNAs, in mature, mature* and isomiR formation. Many isomiRs were detected at a higher frequency than their canonical sequence in miRBase and have different predicted targets. The most common miR-133a isomiR was more effective at targeting a construct containing a sequence from the gelsolin gene than was canonical miR-133a, as determined by dual-fluorescence assay. We identified a novel rat miR-1 homolog from a second miR-1 gene; and a novel rat miRNA similar to miR-676. We also cloned and sequenced the rat miR-486 gene which is not in miRBase (v18). Signalling pathways predicted to be targeted by the most highly detected miRNAs include Ubiquitin-mediated Proteolysis, Mitogen-Activated Protein Kinase, Regulation of Actin Cytoskeleton, Wnt signalling, Calcium Signalling, Gap junctions and Arrhythmogenic Right Ventricular Cardiomyopathy. Most miRNAs are not expressed in a gradient across the ventricular wall, with exceptions including miR-10b, miR-21, miR-99b and miR-486.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to rapidly detect circulating small RNAs, in particular microRNAs (miRNAs), would further increase their already established potential as biomarkers in a range of conditions. One rate-limiting factor is the time taken to perform quantitative real time PCR amplification. We therefore evaluated the ability of a novel thermal cycler to perform this step in less than 10 minutes. Quantitative PCR was performed on an xxpress® thermal cycler (BJS Biotechnologies, Perivale, UK), which employs a resistive heating system and forced air cooling to achieve thermal ramp rates of 10 °C/s, and a conventional peltier-controlled LightCycler 480 system (Roche, Basel, Switzerland) ramping at 4.8 °C/s. The threshold cycle (Ct) for detection of 18S rDNA from a standard genomic DNA sample was significantly more variable across the block (F-test, p=2.4x10-25) for the xxpress (20.01±0.47SD) than the LightCycler (19.87±0.04SD). RNA was extracted from human plasma, reverse transcribed and a panel of miRNAs amplified and detected using SYBR green (Kapa Biosystems, Wilmington, Ma, USA). The sensitivity of both systems was broadly comparable and both detected a panel of miRNAs reliably and indicated similar relative abundances. The xxpress thermal cycler facilitates rapid qPCR detection of small RNAs and brings point-of care diagnostics based upon circulating miRNAs a step closer to reality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphatase and tensin homologue (PTEN) protein belongs to the family of protein tyrosine phos-phatase. Mutations on the phosphatase and tensin homologue (PTEN) protein are highly observed in diverse types of human tumors, being mostly identified on the phosphatase domain of the protein. Although PTEN is a modular protein composed by a phosphatase domain and a C2 domain for mem-brane anchoring, this work aimed at developing a minimal version of PTEN´s phosphatase domain. The minimal version (Small Domain) comprises a 28 residue peptide, with the PTEN 8-mer catalytic peptide accommodated between a α-helix and β-turn as observed in PTEN native structure. Firstly, a de novo prediction of the Small Domain´s secondary structure was carried out by molecular modeling tools. The stability of the predicted structures were then evaluated by Molecular Dynamics. Automated molecular docking of PTEN natural substrate PIP3, its analogue (Inositol) and a PTEN inhibitor (L-tar-tare) were performed with the modeled structure, and PTEN used as a positive control. The gene en-coding for Small Domain was designed and cloned into an expression vector at N-terminal of Green Fluorescence Protein (GFP) encoding gene. The fusion protein was then expressed in Escherichia coli cells. Different expression conditions have been explored for the production of the fusion protein to minimize the formation of inclusion bodies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyperammonemia is a key factor in the pathogenesis of hepatic encephalopathy (HE) as well as other metabolic encephalopathies, such as those associated with inherited disorders of urea cycle enzymes and in Reye's syndrome. Acute HE results in increased brain ammonia (up to 5 mM), astrocytic swelling, and altered glutamatergic function. In the present study, using fluorescence imaging techniques, acute exposure (10 min) of ammonia (NH4+/NH3) to cultured astrocytes resulted in a concentration-dependent, transient increase in [Ca2+]i. This calcium transient was due to release from intracellular calcium stores, since the response was thapsigargin-sensitive and was still observed in calcium-free buffer. Using an enzyme-linked fluorescence assay, glutamate release was measured indirectly via the production of NADH (a naturally fluorescent product when excited with UV light). NH4+/NH3 (5 mM) stimulated a calcium-dependent glutamate release from cultured astrocytes, which was inhibited after preincubation with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester but unaffected after preincubation with glutamate transport inhibitors dihydrokainate and DL-threo-beta-benzyloxyaspartate. NH4+/NH3 (5 mM) also induced a transient intracellular alkaline shift. To investigate whether the effects of NH4+/NH3 were mediated by an increase in pH(i), we applied trimethylamine (TMA+/TMA) as another weak base. TMA+/TMA (5 mM) induced a similar transient increase in both pH(i) and [Ca2+]i (mobilization from intracellular calcium stores) and resulted in calcium-dependent release of glutamate. These results indicate that an acute exposure to ammonia, resulting in cytosolic alkalinization, leads to calcium-dependent glutamate release from astrocytes. A deregulation of glutamate release from astrocytes by ammonia could contribute to glutamate dysfunction consistently observed in acute HE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os flebotomíneos são insetos hematófagos de grande importância médica e veterinária atuando como vetores de parasitas como Leishmania. O estudo do padrão alimentar desses vetores pode ajudar a compreender a sua interação com potenciais reservatórios de Leishmania. Neste estudo, desenvolvemos ensaios de PCR em tempo real para identificação de sangue em flebotomíneos. Seis pares de primers foram desenhados com base no gene citocromo b de sequencias disponíveis no GenBank dos seguintes hospedeiros potenciais: cão, gato, cavalo, galinha, rato e humano. Primeiramente, os ensaios de PCR em tempo real utilizando SYBR Green foram conduzidos usando uma curva padrão com oito concentrações diferentes (i.e., 10 ng, 1 ng, 100 pg, 10 pg, 1 pg, 100 fg, 10 fg e 1 fg por 2 µl) de amostras do DNA extraído do sangue com EDTA a partir de cada espécie de animal. Em seguida, o DNA foi extraído de 100 fêmeas de flebotomíneos ingurgitadas de campo pertencentes a três espécies (i.e., Lutzomyia longipalpis, L. migonei e L. lenti) foram testadas pelos protocolos aqui padronizados. Fêmeas de flebotomíneos foram experimentalmente alimentadas em um rato (Rattus rattus) e utilizadas para avaliar a detecção do ensaio. Os protocolos funcionaram de forma eficiente com limites de detecção de 10 pg a 100 fg. Fêmeas de flebotomíneos ingurgitadas coletadas no campo estavam alimentadas de humanos (73 por cento), galinhas (23 por cento), cães (22 por cento), cavalos (15 por cento), ratos (11 por cento) e gatos (2 por cento). Curiosamente, 76,1 por cento das fêmeas de L. longipalpis foram positivas para o sangue humano. No total, 48 por cento das fêmeas testadas estavam alimentadas em uma única fonte, 31 por cento em duas e 12 por cento em três. A análise do curso de tempo mostrou que a técnica de PCR em tempo real visando o DNA de roedor foi capaz de detectar pequenas quantidades de DNA do hospedeiro até 5 dias após o repasto sanguíneo. Esses protocolos representam ferramentas promissoras para a identificação da fonte alimentar de flebotomíneos de campo

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os insetos podem atuar como pragas agrícolas e vetores de patógenos causadores de doenças ao homem e outros animais. Investigações a respeito do sistema imunológico de Ae. aegypti e Cx. quinquefasciatus poderão contribuir para o desenvolvimento de métodos de controle das doenças veiculadas por estes insetos, principalmente a dengue, enfermidade causadora de sério problema de saúde pública no mundo. Apesar de Ae. aegypti ser a única espécie vetora confirmada na transmissão do vírus Dengue no Brasil, considera-se também importante um melhor entendimento dos mecanismos imunológicos de Cx. quinquefasciatus tido como refratário ao vírus. Neste estudo foram utilizadas linhagens de Ae. aegypti e Cx. quinquefasciatus mantidas no Insetário do Departamento de Entomologia do CPqAM/FIOCRUZ. Três grupos experimentais de fêmeas com 10 dias de idade foram formados para cada espécie. Grupo I, composto por fêmeas alimentadas com solução sacarose (10 por cento); grupo II, fêmeas alimentadas com sangue limpo e grupo III, fêmeas alimentadas com sangue infectado com o sorotipo DENV-1. De cada grupo foram obtidos hemolinfa, glândula salivar, intestino médio e corpo gorduroso para avaliação da expressão dos antimicrobianos defensina e transferrina. Essa avaliação foi realizada através de PCR em Tempo Real utilizando o kit QuantiFast SYBR Green - One-Step qRT-PCR. A avaliação da hemodinâmica foi realizada utilizando 10 microlitros de hemolinfa de cada grupo, através da contagem das células em câmara de Neubauer. Nossos resultados demonstraram que o Cx. quinquefasciatus tem um maior aumento da expressão de defensina e um maior número total de hemócitos quando infectados com DENV-1 em relação ao Ae. aegypti e a transferrina teve sua expressão alterada somente no Ae. aegypti. Em ambas as espécies estudadas, apenas a alimentação sanguínea não interfere na produção de hemócitos ou quanto na indução de defensina e transferrina. Esses dados sugerem que fêmeas de Cx. quinquefasciatus parecem apresentar uma resposta imune celular e humoral mais intensa do que Ae. aegypti quando infectados com DENV-1

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agonist-induced internalization of somatostatin receptors (ssts) determines subsequent cellular responsiveness to peptide agonists and influences sst receptor scintigraphy. To investigate sst2A trafficking, rat sst2A tagged with epitope was expressed in human embryonic kidney cells and tracked by antibody labeling. Confocal microscopical analysis revealed that stimulation with sst and octreotide induced internalization of sst2A. Internalized sst2A remained sequestrated within early endosomes, and 60 min after stimulation, internalized sst2A still colocalized with beta-arrestin1-enhanced green fluorescence protein (EGFP), endothelin-converting enzyme-1 (ECE-1), and rab5a. Internalized (125)I-Tyr(11)-SST-14 was rapidly hydrolyzed by endosomal endopeptidases, with radioactive metabolites being released from the cell. Internalized (125)I-Tyr(1)-octreotide accumulated as an intact peptide and was released from the cell as an intact peptide ligand. We have identified ECE-1 as one of the endopeptidases responsible for inactivation of internalized SST-14. ECE-1-mediated cleavage of SST-14 was inhibited by the specific ECE-1 inhibitor, SM-19712, and by preventing acidification of endosomes using bafilomycin A(1). ECE-1 cleaved SST-14 but not octreotide in an acidic environment. The metallopeptidases angiotensin-1 converting enzyme and ECE-2 did not hydrolyze SST-14 or octreotide. Our results show for the first time that stimulation with SST-14 and octreotide induced sequestration of sst2A into early endosomes and that endocytosed SST-14 is degraded by endopeptidases located in early endosomes. Furthermore, octreotide was not degraded by endosomal peptidases and was released as an intact peptide. This mechanism may explain functional differences between octreotide and SST-14 after sst2A stimulation. Moreover, further investigation of endopeptidase-regulated trafficking of neuropeptides may result in novel concepts of neuropeptide receptor inactivation in cancer diagnosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously described the presence of nicotinamide adenine dinucleotide phosphate reduced form [NAD(P)H] oxidase components in pancreatic beta-cells and its activation by glucose, palmitic acid, and proinflammatory cytokines. In the present study, the importance of the NAD(P)H oxidase complex for pancreatic beta-cell function was examined. Rat pancreatic islets were incubated in the presence of glucose plus diphenyleneiodonium, a NAD(P)H oxidase inhibitor, for 1 h or with the antisense oligonucleotide for p47(PHOX) during 24 h. Reactive oxygen species (ROS) production was determined by a fluorescence assay using 2,7-dichlorodihydrofluorescein diacetate. Insulin secretion, intracellular calcium responses, [U-(14)C] glucose oxidation, and expression of glucose transporter-2, glucokinase and insulin genes were examined. Antisense oligonucleotide reduced p47(PHOX) expression [an important NAD(P)H oxidase cytosolic subunit] and similarly to diphenyleneiodonium also blunted the enzyme activity as indicated by reduction of ROS production. Suppression of NAD(P)H oxidase activity had an inhibitory effect on intracellular calcium responses to glucose and glucose-stimulated insulin secretion by isolated islets. NAD(P)H oxidase inhibition also reduced glucose oxidation and gene expression of glucose transporter-2 and glucokinase. These findings indicate that NAD(P)H oxidase activation plays an important role for ROS production by pancreatic beta-cells during glucose-stimulated insulin secretion. The importance of this enzyme complex for the beta-cell metabolism and the machinery involved in insulin secretion were also shown. (Endocrinology 150: 2197-2201, 2009)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The aim of this study was to evaluate the effect of a high-fat diet (HFD) on nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in rat pancreatic islets. We investigated if changes in NADPH oxidase are connected to beta cell dysfunction reported in obese animals. Methods: Male Wistar rats were fed a HFD or control diet for 3 months. DNA fragmentation, insulin secretion, and [U-(14)C] glucose oxidation were examined in isolated pancreatic islets. The oxidative stress markers nitrotyrosine and 4-hydroxy-2-nonenal were assessed by immunohistochemistry. The protein content of gp91(phox) and p47(phox) was evaluated by Western blotting. Production of reactive oxygen species (ROS) was determined by a fluorescence assay using hydroethidine. Results: Occurrence of DNA fragmentation was reduced in pancreatic islets from HFD rats. There were no differences in oxidative stress markers between the groups. Glucose oxidation and insulin secretion were elevated due to high glucose in pancreatic islets from HFD rats. Protein concentrations of p47(phox) and gp91(phox) subunits were reduced and ROS production was diminished in pancreatic islets from HFD rats. Conclusions: The diminished content of NADPH oxidase subunits and ROS concentrations may be associated with increased glucose oxidation and insulin secretion in an attempt to compensate for the peripheral insulin resistance elicited by the HFD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The interference of electric fields (EF) with biological processes is an issue of considerable interest. No studies have as yet been reported on the combined effect of EF plus ionising radiation. Here we report studies on this combined effect using the prokaryote Microcystis panniformis, the eukaryote Candida albicans and human cells. Materials and methods: Cultures of Microcystis panniformis (Cyanobacteria) in glass tubes were irradiated with doses in the interval 0.5-5kGy, using a 60Co gamma source facility. Samples irradiated with 3kGy were exposed for 2h to a 20Vcm-1 static electric field and viable cells were enumerated. Cultures of Candida albicans were incubated at 36C for 20h, gamma-irradiated with doses from 1-4kGy, and submitted to an electric field of 180Vcm-1. Samples were examined under a fluorescence microscope and the number of unviable (red) and viable (apple green fluorescence) cells was determined. For crossing-check purposes, MRC5 strain of lung cells were irradiated with 2 Gy, exposed to an electric field of 1250 V/cm, incubated overnight with the anti-body anti-phospho-histone H2AX and examined under a fluorescence microscope to quantify nuclei with -H2AX foci. Results: In cells exposed to EF, death increased substantially compared to irradiation alone. In C. albicans we observed suppression of the DNA repair shoulder. The effect of EF in growth of M. panniformis was substantial; the number of surviving cells on day-2 after irradiation was 12 times greater than when an EF was applied. By the action of a static electric field on the irradiated MRC5 cells the number of nuclei with -H2AX foci increased 40%, approximately. Conclusions: Application of an EF following irradiation greatly increases cell death. The observation that the DNA repair shoulder in the survival curve of C. albicans is suppressed when cells are exposed to irradiation+EF suggests that EF likely inactivate cellular recovering processes. The result for the number of nuclei with -H2AX foci in MRC5 cells indicates that an EF interferes mostly in the DNA repair mechanisms. A molecular ad-hoc model is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the oral cavity is easily accessible to inspection, patients with oral cancer most often present at a late stage, leading to high morbidity and mortality. Autofluorescence imaging has emerged as a promising technology to aid clinicians in screening for oral neoplasia and as an aid to resection, but current approaches rely on subjective interpretation. We present a new method to objectively delineate neoplastic oral mucosa using autofluorescence imaging. Autofluorescence images were obtained from 56 patients with oral lesions and 11 normal volunteers. From these images, 276 measurements from 159 unique regions of interest (ROI) sites corresponding to normal and confirmed neoplastic areas were identified. Data from ROIs in the first 46 subjects were used to develop a simple classification algorithm based on the ratio of red-to-green fluorescence; performance of this algorithm was then validated using data from the ROIs in the last 21 subjects. This algorithm was applied to patient images to create visual disease probability maps across the field of view. Histologic sections of resected tissue were used to validate the disease probability maps. The best discrimination between neoplastic and nonneoplastic areas was obtained at 405 nm excitation; normal tissue could be discriminated from dysplasia and invasive cancer with a 95.9% sensitivity and 96.2% specificity in the training set, and with a 100% sensitivity and 91.4% specificity in the validation set. Disease probability maps qualitatively agreed with both clinical impression and histology. Autofluorescence imaging coupled with objective image analysis provided a sensitive and noninvasive tool for the detection of oral neoplasia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been well documented that oxidative stress is involved in stroke. Currently, many neuroprotective strategies have been targeted at molecules that are able to act as an oxidant to intervene with free-radical mediated apoptosis in the ischemic penumbra. In particular, natural products which contain antioxidant properties have undoubtedly efficacious for stroke treatment. In the current study, therapeutic effects of Ginkgo biloba extract (EGb) against cerebral protection in Wistar rats underwent middle cerebral artery occlusion (MCAO) was evaluated. A comparison study was conducted by using Losartan, an antihypertensive drug. Gene expression levels of pro-apoptotic genes (AT2 receptor, Fas, Bax and Bcl-xS) have shown to have significant reduction by EGb- and Losartan-treated groups as compared to vehicle group. Significant reduction of immunoreactivity of protein production of these genes, together with least nuclear green fluorescence observed in TUNEL, EGb, as an antioxidant drug, is concluded to have potent and promising therapeutic effect for stroke treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type 2 diabetes mellitus is a metabolic disease characterised by defects in insulin secretion and insulin action and disturbances in carbohydrate, fat and protein metabolism. Hepatic insulin resistance contributes to hyperglycemia and also leads to disturbances in fat metabolism in type 2 diabetes. Psammomys obesus is a unique poly genie animal model of type 2 diabetes and obesity, ideally suited for studies examining physiological and genetic aspects of these diseases. To identify metabolic abnormalities potentially contributing to the obesity and diabetes phenotype in P. obesus, indirect calorimetry was used to characterise whole body energy expenditure and substrate utilisation. Lean-NGT, obese-IGT and obese-diabetic animals were examined in fed and fasted states and following 14 days of dietary energy restriction. Energy expenditure and fat oxidation were elevated in the obese-IGT and obese-diabetic groups in proportion to body weight. Glucose oxidation was not different between groups. Obese-diabetic P. obesus displayed elevated nocturnal blood glucose levels and fat oxidation. Following 14 days of dietary energy restriction, body weight was reduced and plasma insulin and blood glucose levels were normalised in all groups. Glucose oxidation was reduced and fat oxidation was increased. After 24 hours of fasting, plasma insulin and blood glucose levels were normalised in all groups. Energy expenditure and glucose oxidation were greatly reduced and fat oxidation was increased. Following either dietary energy restriction or fasting, energy expenditure, glucose oxidation and fat oxidation were not different between groups of P. obesus. Energy expenditure and whole body substrate utilisation in P. obesus was similar to that seen in humans. P. obesus responded normally to short term fasting and dietary energy restriction. Elevated nocturnal fat oxidation rates and plasma glucose levels in obese-diabetic P. obesus may be an important factor in the pathogenesis of obesity and type 2 diabetes in these animals. These studies have further validated P. obesus as an ideal animal model of type 2 diabetes and obesity. It was hypothesised that many genes in the liver of P. obesus involved in glucose and fat metabolism would be differentially expressed between lean-NGT and obese-diabetic animals. These genes may represent significant factors in the pathophysiology of type 2 diabetes. Two gene discovery experiments were conducted using suppression subtractive hybridisation (SSH) to enrich a cDNA library for differentially expressed genes. Experiment 1 used cDNA dot blots to screen 576 clones with cDNA derived from lean-NGT and obese-diabetic animals. 6 clones were identified as overexpressed in lean-NGT animals and 6 were overexpressed in obese-diabetic animals. These 12 clones were sequenced and SYBR-Green PCR was used to confirm differential gene expression. 4 genes were overexpressed (≥1.5 fold) in lean-NGT animals and 4 genes were overexpressed (≥1.5 fold) in obese-diabetic animals. To explore the physiological role of these genes, hepatic gene expression was examined in several physiological conditions. One gene, encoding thyroxine binding globulin (TBG), was confirmed as overexpressed in lean-NGT P. obesus with ad libitum access to food, relative to both obese-IGT and obese-diabetic animals. TBG expression decreased with fasting in all animals. Fasting TBG expression remained greater in lean-NGT animals than obese-IGT and obese-diabetic animals. TBG expression was not significantly affected by dietary energy restriction. TBG is involved in thyroid metabolism and is potentially involved in the regulation of energy expenditure. Fasting increased hepatic site 1 protease (SIP) expression in lean-NGT animals but was not significantly affected in obese-IGT and obese-diabetic animals. SIP expression was not significantly affected by dietary energy restriction. SIP is involved in the proteolytic processing of steroid response element binding proteins (SREBP). SREBPs are insulin responsive and are known to be involved in lipid metabolism. Gene expression studies found TBG and SIP were associated with obesity and diabetes. Future research will determine whether TBG and SIP are important in the pathogenesis of these diseases. Experiment 2 used SSH and cDNA microarray to screen 8064 clones. 223 clones were identified as overexpressed in lean-NGT P. obesus and 274 clones were overexpressed in obese-diabetic P. obesus (p ≤0.05). The 9 most significantly differentially expressed clones identified from the microarray screen were sequenced (p ≤0.01). 7 novel genes were identified as well as; sulfotransferase related protein and albumin. These 2 genes have not previously been associated with either type 2 diabetes or obesity. It is unclear why hepatic expression of these genes may differ between lean-NGT and obese-diabetic groups of P. obesus. Subsequent studies will explore the potential role of these novel and known genes in the pathophysiology of type 2 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal-catalysed oxidation (MCO) may play a causative role in the pathogenesis of Alzheimer's disease (AD). Amyloid peptide (A), the major biomarker of AD, in the presence of copper ions reduces Cu2+ to Cu+ and catalyses the formation of H2O2 that subsequently induces radicals through Fenton chemistry. A is also subject to attack by free radicals, where the presence of Cu2+ in conjunction with H2O2 catalyses oxygenation, primarily at the methionine sulfur atom. This work investigates MCO of A, to gain further insight into the role of oxidative stress in AD. By combining a fluorescence assay with gel electrophoresis to monitor MCO reactions of A (1-28) in the presence and absence of methionine it was determined that methionine can both protect some residues against MCO and promote the oxidation of Tyr(10) specifically. Electrospray ionization mass spectrometric analysis of methionine MCO products indicated the formation of methionine sulfoxide, methionine sulfone and related hydroxylated products. Similar products could be formed from the oxidation of Met(35) of A and may relate to changes in properties of the peptide following MCO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neuronal voltage-gated N-type calcium channel (Cav2.2) is a validated target for the treatment of neuropathic pain. A small library of anthranilamide-derived ω-Conotoxin GVIA mimetics bearing the diphenylmethylpiperazine moiety were prepared and tested using three experimental measures of calcium channel blockade. These consisted of a 125I-ω-conotoxin GVIA displacement assay, a fluorescence-based calcium response assay with SH-SY5Y neuroblastoma cells, and a whole-cell patch clamp electrophysiology assay with HEK293 cells stably expressing human Cav2.2 channels. A subset of compounds were active in all three assays. This is the first time that compounds designed to be mimics of ω-conotoxin GVIA and found to be active in the 125I-ω-conotoxin GVIA displacement assay have also been shown to block functional ion channels in a dose-dependent manner.