987 resultados para swift heavy ion irradiation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous SiO2 (a-SiO2) thin films were thermally grown on single-crystalline silicon. These a-SiO2/Si samples were first implanted (C-doped) with 100-keV carbon ion at room temperature (RT) at a dose of 5.0 x 10(17) C-ions/cm(2) and were then irradiated at RT by using 853 MeV Pb ions at closes of 5.0 x 10(11), 1.0 x 10(12), 2.0 x 10(12) and 5.0 x 10(12) Pb-ions/cm(2), respectively. The microstructures and the photoluminescence (PL) properties of these samples induced by Pb ions were investigated using fluorescence spectroscopy and transmission electron microscopy. We found that high-energy Pb-ion irradiation could induce the formation of a new phase and a change in the PL property of C-doped a-SiO2/Si samples. The relationship between the observed phenomena and the ion irradiation parameters is briefly discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polypropylene (PP) microporous membranes were successfully prepared by swift heavy ion irradiation and track-etching. Polypropylene foils were irradiated with Au-197 ions of kinetic energy 11.4 MeV.u(-1) (total energy of 2245.8 MeV) and fluence 1x10(8) ions.cm(-2) at normal incidence. The damaged regions produced by the gold ions along the trajectories were etched in H2SO4 and K2Cr2O7 solutions leading to the formation of cylindrical pores in the membranes. The pore diameters of the PP microporous membranes increased from 380 to 1610 nm as the etching time increased from 5 to 30 min. The surface and cross-section morphologies of the porous membranes were characterized by scanning electron microscopy (SEM). The micropores in the membranes were found to be cylindrical in shape, homogeneous in distribution, and equal in size. Some mathematical relations of the porosity of the PP microporous membranes were established by analytic derivation. The microporous membranes were used in lithium-ion batteries to measure their properties as separators. The electrical conductivity of the porous membrane immersed in liquid electrolyte was found to be comparable to that of commercial separators by electrochemical impedance spectroscopy (EIS). The results showed that the porosity and electrical conductivity were dependent on the ion fluence and etching time. By adjusting these two factors, microporous membranes with good porosity and electrical conductivity were made that met the requirements for commercial use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

利用离子辐照结合径迹蚀刻方法制备聚丙烯(PP)微孔膜.用加速器产生的单核能为11.4MeV·u-1(总能量2245.8MeV)的197Au离子束辐照PP膜,剂量为1×108ions·cm-2.辐照后PP膜沿离子路径产生损伤区域,用硫酸与重铬酸钾的混合液进行蚀刻(5-30min),制备出孔径为380-1610nm的聚丙烯微孔膜.对膜的表面和断面形貌进行表征,微孔膜的孔径大小及空间分布均匀,孔道上下贯通,形状近似为圆柱形.给出了微孔膜的孔隙率理论公式.将制备的聚丙烯微孔膜用作锂离子电池隔膜,用电化学阻抗谱(EIS)测定浸满电解液的微孔膜的离子电导率,并与商用隔膜进行比较.分析表明辐照剂量和孔径大小均会影响膜的孔隙率和离子电导率,选择合适的辐照剂量和蚀刻时间,可以制备出孔隙率和离子电导率符合应用标准的聚丙烯微孔膜.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

用能量11.4MeV/u和注量1×108ions/cm2的197Au离子垂直辐照聚丙烯薄膜,通过电导测量法监测温度、硫酸浓度和重铬酸钾浓度对径迹蚀刻速率的影响,得到合适的蚀刻条件;成功制备出孔径范围在600—1000nm的重离子径迹聚丙烯孔膜,并用场发射扫描电镜对孔的形状及孔径大小进行了表征,对孔洞锥角的形成进行了分析,为重离子辐照技术制备锂离子电池隔膜提供了实验数据。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Department of Physics, Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of new materials has been the hall mark of human civilization. The quest for making new devices and new materials has prompted humanity to pursue new methods and techniques that eventually has given birth to modern science and technology. With the advent of nanoscience and nanotechnology, scientists are trying hard to tailor materials by varying their size and shape rather than playing with the composition of the material. This, along with the discovery of new and sophisticated imaging tools, has led to the discovery of several new classes of materials like (3D) Graphite, (2D) graphene, (1D) carbon nanotubes, (0D) fullerenes etc. Magnetic materials are in the forefront of applications and have beencontributing their share to remove obsolescence and bring in new devices based on magnetism and magnetic materials. They find applications in various devices such as electromagnets, read heads, sensors, antennas, lubricants etc. Ferromagnetic as well as ferrimagnetic materials have been in use in the form of various devices. Among the ferromagnetic materials iron, cobalt and nickel occupy an important position while various ferrites finds applications in devices ranging from magnetic cores to sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetism and magnetic materials have been playing a lead role in improving the quality of life. They are increasingly being used in a wide variety of applications ranging from compasses to modern technological devices. Metallic glasses occupy an important position among magnetic materials. They assume importance both from a scientific and an application point of view since they represent an amorphous form of condensed matter with significant deviation from thermodynamic equilibrium. Metallic glasses having good soft magnetic properties are widely used in tape recorder heads, cores of high-power transformers and metallic shields. Superconducting metallic glasses are being used to produce high magnetic fields and magnetic levitation effect. Upon heat treatment, they undergo structural relaxation leading to subtle rearrangements of constituent atoms. This leads to densification of amorphous phase and subsequent nanocrystallisation. The short-range structural relaxation phenomenon gives rise to significant variations in physical, mechanical and magnetic properties. Magnetic amorphous alloys of Co-Fe exhibit excellent soft magnetic properties which make them promising candidates for applications as transformer cores, sensors, and actuators. With the advent of microminiaturization and nanotechnology, thin film forms of these alloys are sought after for soft under layers for perpendicular recording media. The thin film forms of these alloys can also be used for fabrication of magnetic micro electro mechanical systems (magnetic MEMS). In bulk, they are drawn in the form of ribbons, often by melt spinning. The main constituents of these alloys are Co, Fe, Ni, Si, Mo and B. Mo acts as the grain growth inhibitor and Si and B facilitate the amorphous nature in the alloy structure. The ferromagnetic phases such as Co-Fe and Fe-Ni in the alloy composition determine the soft magnetic properties. The grain correlation length, a measure of the grain size, often determines the soft magnetic properties of these alloys. Amorphous alloys could be restructured in to their nanocrystalline counterparts by different techniques. The structure of nanocrystalline material consists of nanosized ferromagnetic crystallites embedded in an amorphous matrix. When the amorphous phase is ferromagnetic, they facilitate exchange coupling between nanocrystallites. This exchange coupling results in the vanishing of magnetocrystalline anisotropy which improves the soft magnetic properties. From a fundamental perspective, exchange correlation length and grain size are the deciding factors that determine the magnetic properties of these nanocrystalline materials. In thin films, surfaces and interfaces predominantly decides the bulk property and hence tailoring the surface roughness and morphology of the film could result in modified magnetic properties. Surface modifications can be achieved by thermal annealing at various temperatures. Ion irradiation is an alternative tool to modify the surface/structural properties. The surface evolution of a thin film under swift heavy ion (SHI) irradiation is an outcome of different competing mechanism. It could be sputtering induced by SHI followed by surface roughening process and the material transport induced smoothening process. The impingement of ions with different fluence on the alloy is bound to produce systematic microstructural changes and this could effectively be used for tailoring magnetic parameters namely coercivity, saturation magnetization, magnetic permeability and remanence of these materials. Swift heavy ion irradiation is a novel and an ingenious tool for surface modification which eventually will lead to changes in the bulk as well as surface magnetic property. SHI has been widely used as a method for the creation of latent tracks in thin films. The bombardment of SHI modifies the surfaces or interfaces or creates defects, which induces strain in the film. These changes will have profound influence on the magnetic anisotropy and the magnetisation of the specimen. Thus inducing structural and morphological changes by thermal annealing and swift heavy ion irradiation, which in turn induce changes in the magnetic properties of these alloys, is one of the motivation of this study. Multiferroic and magneto-electrics is a class of functional materials with wide application potential and are of great interest to material scientists and engineers. Magnetoelectric materials combine both magnetic as well as ferroelectric properties in a single specimen. The dielectric properties of such materials can be controlled by the application of an external magnetic field and the magnetic properties by an electric field. Composites with magnetic and piezo/ferroelectric individual phases are found to have strong magnetoelectric (ME) response at room temperature and hence are preferred to single phasic multiferroic materials. Currently research in this class of materials is towards optimization of the ME coupling by tailoring the piezoelectric and magnetostrictive properties of the two individual components of ME composites. The magnetoelectric coupling constant (MECC) (_ ME) is the parameter that decides the extent of interdependence of magnetic and electric response of the composite structure. Extensive investigates have been carried out in bulk composites possessing on giant ME coupling. These materials are fabricated by either gluing the individual components to each other or mixing the magnetic material to a piezoelectric matrix. The most extensively investigated material combinations are Lead Zirconate Titanate (PZT) or Lead Magnesium Niobate-Lead Titanate (PMNPT) as the piezoelectric, and Terfenol-D as the magnetostrictive phase and the coupling is measured in different configurations like transverse, longitudinal and inplane longitudinal. Fabrication of a lead free multiferroic composite with a strong ME response is the need of the hour from a device application point of view. The multilayer structure is expected to be far superior to bulk composites in terms of ME coupling since the piezoelectric (PE) layer can easily be poled electrically to enhance the piezoelectricity and hence the ME effect. The giant magnetostriction reported in the Co-Fe thin films makes it an ideal candidate for the ferromagnetic component and BaTiO3 which is a well known ferroelectric material with improved piezoelectric properties as the ferroelectric component. The multilayer structure of BaTiO3- CoFe- BaTiO3 is an ideal system to understand the underlying fundamental physics behind the ME coupling mechanism. Giant magnetoelectric coupling coefficient is anticipated for these multilayer structures of BaTiO3-CoFe-BaTiO3. This makes it an ideal candidate for cantilever applications in magnetic MEMS/NEMS devices. SrTiO3 is an incipient ferroelectric material which is paraelectric up to 0K in its pure unstressed form. Recently few studies showed that ferroelectricity can be induced by application of stress or by chemical / isotopic substitution. The search for room temperature magnetoelectric coupling in SrTiO3-CoFe-SrTiO3 multilayer structures is of fundamental interest. Yet another motivation of the present work is to fabricate multilayer structures consisting of CoFe/ BaTiO3 and CoFe/ SrTiO3 for possible giant ME coupling coefficient (MECC) values. These are lead free and hence promising candidates for MEMS applications. The elucidation of mechanism for the giant MECC also will be the part of the objective of this investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple illustrative physical model is presented to describe the kinetics of damage and amorphization by swiftheavyions (SHI) in LiNbO3. The model considers that every ion impact generates initially a defective region (halo) and a full amorphous core whose relative size depends on the electronic stopping power. Below a given stopping power threshold only a halo is generated. For increasing fluences the amorphized area grows monotonically via overlapping of a fixed number N of halos. In spite of its simplicity the model, which provides analytical solutions, describes many relevant features of the kinetic behaviour. In particular, it predicts approximate Avrami curves with parameters depending on stopping power in qualitative accordance with experiment that turn into Poisson laws well above the threshold value

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The propagation losses (PL) of lithium niobate optical planar waveguides fabricated by swift heavy-ion irradiation (SHI), an alternative to conventional ion implantation, have been investigated and optimized. For waveguide fabrication, congruently melting LiNbO3 substrates were irradiated with F ions at 20 MeV or 30 MeV and fluences in the range 1013–1014 cm−2. The influence of the temperature and time of post-irradiation annealing treatments has been systematically studied. Optimum propagation losses lower than 0.5 dB/cm have been obtained for both TE and TM modes, after a two-stage annealing treatment at 350 and 375∘C. Possible loss mechanisms are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Irradiation with swift heavy ions (SHI), roughly defined as those having atomic masses larger than 15 and energies exceeding 1 MeV/amu, may lead to significant modification of the irradiated material in a nanometric region around the (straight) ion trajectory (latent tracks). In the case of amorphous silica, SHI irradiation originates nano-tracks of higher density than the virgin material (densification). As a result, the refractive index is increased with respect to that of the surroundings. Moreover, track overlapping leads to continuous amorphous layers that present a significant contrast with respect to the pristine substrate. We have recently demonstrated that SHI irradiation produces a large number of point defects, easily detectable by a number of experimental techniques (work presented in the parallel conference ICDIM). The mechanisms of energy transfer from SHI to the target material have their origin in the high electronic excitation induced in the solid. A number of phenomenological approaches have been employed to describe these mechanisms: coulomb explosion, thermal spike, non-radiative exciton decay, bond weakening. However, a detailed microscopic description is missing due to the difficulty of modeling the time evolution of the electronic excitation. In this work we have employed molecular dynamics (MD) calculations to determine whether the irradiation effects are related to the thermal phenomena described by MD (in the ps domain) or to electronic phenomena (sub-ps domain), e.g., exciton localization. We have carried out simulations of up to 100 ps with large boxes (30x30x8 nm3) using a home-modified version of MDCASK that allows us to define a central hot cylinder (ion track) from which heat flows to the surrounding cold bath (unirradiated sample). We observed that once the cylinder has cooled down, the Si and O coordination numbers are 4 and 2, respectively, as in virgin silica. On the other hand, the density of the (cold) cylinder increases with respect to that of silica and, furthermore, the silica network ring size decreases. Both effects are in agreement with the observed densification. In conclusion, purely thermal effects do not explain the generation of point defects upon irradiation, but they do account for the silica densification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetism and magnetic materials have been playing a lead role in the day to day life of human beings. The human kind owes its gratitude to the ‘lodestone’ meaning ‘leading stone’ which lead to the discovery of nations and the onset of modern civilizations. If it was William Gilbert, who first stated that ‘earth was a giant magnet’, then it was the turn of Faraday who correlated electricity and magnetism. Magnetic materials find innumerable applications in the form of inductors, read and write heads, motors, storage devices, magnetic resonance imaging and fusion reactors. Now the industry of magnetic materials has almost surpassed the semiconductor industry and this speaks volumes about its importance. Extensive research is being carried out by scientists and engineers to remove obsolescence and invent new devices. Though magnetism can be categorized based on the response of an applied magnetic field in to diamagnetic, paramagnetic, ferromagnetic, ferrimagnetic and antiferromagnetic; it is ferrimagnetic, ferromagnetic and antiferromagnetic materials which have potential applications. The present thesis focusses on these materials, their composite structures and different ways and means to modify their properties for useful applications. In the past, metals like Fe, Ni and Co were sought after for various applications though iron was in the forefront because of its cost effectiveness and abundance. Later, alloys based on Fe and Ni were increasingly employed. They were used in magnetic heads and in inductors. Ferrites entered the arena and subsequently most of the newer applications were based on ferrites, a ferrimagnetic material, whose composition can be tuned to tailor the magnetic properties. In the late 1950s a new class of magnetic material emerged on the magnetic horizon and they were fondly known as metallic glasses. They are well known for their soft magnetic properties. They were synthesized in the form of melt spun ribbons and are amorphous in nature and they are projected to replace the crystalline counterparts.