765 resultados para sustainable travel


Relevância:

70.00% 70.00%

Publicador:

Resumo:

To combat unsustainable transportation systems characterized by reliance on petroleum, polluting emissions, traffic congestion and suburban sprawl, planners encourage mixed use, densely populated areas that provide individuals with opportunities to live, work, eat and shop without necessarily having to drive private automobiles to accommodate their needs. Despite these attempts, the frequency and duration of automobile trips has consistently increased in the United States throughout past decades. While many studies have focused on how residential proximity to transit influences travel behavior, the effect of workplace location has largely been ignored. This paper asks, does working near a TOD influence the travel behaviors of workers differently than workers living near a TOD? We examine the non-work travel behaviors of workers based upon their commuting mode and proximity to TODs. The data came from a 2009 travel behavior survey by the Denver Regional Council of Governments, which contains 8,000 households, 16,000 individuals, and nearly 80,000 trips. We measure sustainable travel behaviors as reduced mileage, reduced number of trips, and increased use of non-automobile transportation. The results of this study indicate that closer proximity of both households and workplaces to TODs decrease levels of car commuting and that non-car commuting leads to more sustainable personal travel behaviors characterized by more trips made with alternative modes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tämän työn tavoitteena on luoda Turun yliopistolliselle keskussairaalalle kestävän kehityksen mukainen työmatkaliikkumissuunnitelma, jonka avulla lisätään kestävien liikkumismuotojen käyttöä, kustannusnäkökulma huomioon ottaen. Lisäksi tavoitteena on ratkaista nykyisen pysäköintijärjestelyn ongelmia. Työn teoriaosuudessa on esitetty kestävän liikkumisen, työssä hyödynnettävän kustannuslaskennan ja liikkumissuunnitelman luomisen vaiheiden periaatteet. Empiriaosuudessa rakennettava liikkumissuunnitelma perustuu näihin teorioihin. Työn keskeisenä tutkimusmenetelmänä on käytetty Webropol-pohjaista kyselyä, jolla tutkittiin työmatkaliikkumisen nykytilaa. Lisäksi kyselyllä tutkittiin työntekijöiden mielipiteitä mahdollisista kehitystoimenpiteistä. Työntekijöiden vuosittaisista työmatkakilometreistä 16,9 miljoonaa kuljettiin yksityisautolla, mikä on noin 65 % kaikista työmatkakilometreistä. Yksityisautoilu aiheuttaa kulkumuodoista suurimmat päästöt kaikissa päästöluokissa. Pysäköinnin kustannuksia tutkittaessa havaittiin, että pysäköintioikeuden hinta on alhainen verrattuna parkkihallin rakennus- ja ylläpitokustannuksiin. Eri liikkumistapoja vertailtaessa havaittiin, että nykytilanteessa yksityisautoilu on lyhyillä työmatkoilla edullisempi kulkumuoto kuin julkinen liikenne. Toteutettavuus-vaikuttavuus-suhde huomioon ottaen, parhaimmat työmatkaliikkumisen kehitystoimenpiteet ovat osittain kustannettu työsuhdematkalippu työntekijöille, lukittavien pyörätelineiden sijoittaminen työpaikan välittömään läheisyyteen, kävely- ja pyöräreittien parempi talvikunnossapito, työnantajan kustantama vuosittainen polkupyörähuolto ja pysäköintioikeuden hinnankorotus. Toimenpiteiden jälkeen yksityisautoilu on kaikilla työmatkan pituuksilla kallein liikkumismuoto.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic farming means a holistic application of agricultural land-use, hence, this study aimed to assess ecological and socio-economic aspects that show benefits of the strategy and achievements of organic farming in comparison to conventional farming in Darjeeling District, State of West Bengal, India and Kanagawa Prefecture/Kanto in Central Japan. The objective of this study has been empirically analysed on aspects of crop diversity, yield, income and sales prices in the two study regions, where 50 households each, i.e. in total 100 households were interviewed at farm-level. Therefore, the small sample size does not necessarily reflect the broad-scale of the use and benefit of organic farming in both regions. The problems faced in mountainous regions in terms of agriculture and livelihoods for small-scale farmers, which are most affected and dependant on their immediate environment, such as low yields, income and illegal felling leading to soil erosion and landslides, are analyzed. Furthermore, factors such as climate, soils, vegetation and relief equally play an important role for these farmers, in terms of land-use. To supplement and improve the income of farmers, local NGOs have introduced organic farming and high value organic cash crops such as ginger, tea, orange and cardamom and small income generating means (floriculture, apiary etc.). For non-certified and certified organic products the volume is given for India, while for Japan only certified organic production figures are given, as there are several definitions for organic in Japan. Hence, prior to the implementation of organic laws and standards, even reduced chemical input was sold as non-certified organic. Furthermore, the distribution and certification system of both countries are explained in detail, including interviews with distribution companies and cooperatives. Supportive observations from Kanagawa Prefecture and the Kanto region are helpful and practical suggestions for organic farmers in Darjeeling District. Most of these are simple and applicable soil management measures, natural insect repelling applications and describe the direct marketing system practiced in Japan. The former two include compost, intercropping, Effective Microorganisms (EM), clover, rice husk charcoal and wood vinegar. More supportive observations have been made at organic and biodynamic tea estates in Darjeeling District, which use citronella, neem, marigold, leguminous and soil binding plants for soil management and natural insect control. Due to the close ties between farmers and consumers in Japan, certification is often neither necessary nor wanted by the producers. They have built a confidence relationship with their customers; thus, such measures are simply not required. Another option is group certification, instead of the expensive individual certification. The former aims at lower costs for farmers who have formed a cooperative or a farmers' group. Consumer awareness for organic goods is another crucial aspect to help improve the situation of organic farmers. Awareness is slightly more advanced in Kanto than in Darjeeling District, as it is improved due to the close (sales) ties between farmers and consumers in Kanto. Interviews conducted with several such cooperatives and companies underline the positive system of TEIKEI. The introduction of organic farming in the study regions has shown positive effects for those involved, even though it still in its beginning stages in Darjeeling District. This study was only partly able to assess the benefits of organic agriculture at its present level for Darjeeling District, while more positively for the organic farmers of Kanto. The organic farming practice needs further improvement, encouragement and monitoring for the Darjeeling District farmers by locals, consumers, NGOs and politicians. The supportive observations from Kanagawa Prefecture and the Kanto region are a small step in this direction, showing how, simple soil improvements and thus, yield and income increases, as well as direct sales options can enhance the livelihood of organic farmers without destroying their environment and natural resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conference on Global Change and the World’s Mountains held in Perth, Scotland, in 2010 offered a unique opportunity to analyze the state and progress of mountain research and its contribution to sustainable mountain development, as well as to reflect on required reorientations of research agendas. In this paper we provide the results of a three-step assessment of the research presented by 450 researchers from around the world. First, we determined the state of the art of mountain research and categorized it based on the analytical structure of the Global Land Project (GLP 2005). Second, we identified emerging themes for future research. Finally, we assessed the contribution of mountain research to sustainable development along the lines of the Grand Challenges in Global Sustainability Research (International Council for Science 2010). Analysis revealed that despite the growing recognition of the importance of more integrative research (inter- and transdisciplinary), the research community gathered in Perth still focuses on environmental drivers of change and on interactions within ecological systems. Only a small percentage of current research seeks to enhance understanding of social systems and of interactions between social and ecological systems. From the ecological systems perspective, a greater effort is needed to disentangle and assess different drivers of change and to investigate impacts on the rendering of ecosystem services. From the social systems perspective, significant shortcomings remain in understanding the characteristics, trends, and impacts of human movements to, within, and out of mountain areas as a form of global change. Likewise, sociocultural drivers affecting collective behavior as well as incentive systems devised by policy and decision makers are little understood and require more in-depth investigation. Both the complexity of coupled social– ecological systems and incomplete data sets hinder integrated systems research. Increased understanding of linkages and feedbacks between social and ecological systems will help to identify nonlinearities and thresholds (tipping points) in both system types. This presupposes effective collaboration between ecological and social sciences. Reflections on the Grand Challenges in Sustainability Research put forth by the International Council for Science (2010) reveal the need to intensify research on effective responses and innovations. This will help to achieve sustainable development in mountain regions while maintaining the core competence of mountain research in forecasting and observation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing pressure on mountain water resources is making it necessary to address water governance issues in a transdisciplinary way. This entails drawing on different disciplinary perspectives, different types of knowledge, and different interests to answer complex governance questions. This study identifies strategies for addressing specific challenges to transdisciplinary knowledge production aiming at sustainable and reflective water governance. The study draws on the experiences of 5 large transdisciplinary water governance research projects conducted in Austria and Switzerland (Alp-Water-Scarce, MontanAqua, Drought-CH, Sustainable Water Infrastructure Planning, and an integrative river management project in the Kamp Valley). Experiences were discussed and systematically analyzed in a workshop and subsequent interviews. These discussions identified 4 important challenges to interactions between scientists and stakeholders—ensuring stakeholder legitimacy, encouraging participation, managing expectations, and preventing misuse of data and research results—and explored strategies used by the projects to meet them. Strategies ranged from key points to be considered in stakeholder selection to measures that enhance trustful relationships and create commitment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both climate change and socio-economic development will significantly modify the supply and consumption of water in future. Consequently, regional development has to face aggravation of existing or emergence of new conflicts of interest. In this context, transdisciplinary co-production of knowledge is considered as an important means for coping with these challenges. Accordingly, the MontanAqua project aims at developing strategies for more sustainable water management in the study area Crans-Montana-Sierre (Switzerland) in a transdisciplinary way. It strives for co-producing system, target and transformation knowledge among researchers, policy makers, public administration and civil society organizations. The research process basically consisted of the following steps: First, the current water situation in the study region was investigated. How much water is available? How much water is being used? How are decisions on water distribution and use taken? Second, participatory scenario workshops were conducted in order to identify the stakeholders’ visions of regional development. Third, the water situation in 2050 was simulated by modeling the evolution of water resources and water use and by reflecting on the institutional aspects. These steps laid ground for jointly assessing the consequences of the stakeholders’ visions of development in view of scientific data regarding governance, availability and use of water in the region as well as developing necessary transformation knowledge. During all of these steps researchers have collaborated with stakeholders in the support group RegiEau. The RegiEau group consists of key representatives of owners, managers, users, and pressure groups related to water and landscape: representatives of the communes (mostly the presidents), the canton (administration and parliament), water management associations, agriculture, viticulture, hydropower, tourism, and landscape protection. The aim of the talk is to explore potentials and constraints of scientific modeling of water availability and use within the process of transdisciplinary co-producing strategies for more sustainable water governance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Competing water demands for household consumption as well as the production of food, energy, and other uses pose challenges for water supply and sustainable development in many parts of the world. Designing creative strategies and learning processes for sustainable water governance is thus of prime importance. While this need is uncontested, suitable approaches still have to be found. In this article we present and evaluate a conceptual approach to scenario building aimed at transdisciplinary learning for sustainable water governance. The approach combines normative, explorative, and participatory scenario elements. This combination allows for adequate consideration of stakeholders’ and scientists’ systems, target, and transformation knowledge. Application of the approach in the MontanAqua project in the Swiss Alps confirmed its high potential for co-producing new knowledge and establishing a meaningful and deliberative dialogue between all actors involved. The iterative and combined approach ensured that stakeholders’ knowledge was adequately captured, fed into scientific analysis, and brought back to stakeholders in several cycles, thereby facilitating learning and co-production of new knowledge relevant for both stakeholders and scientists. However, the approach also revealed a number of constraints, including the enormous flexibility required of stakeholders and scientists in order for them to truly engage in the co-production of new knowledge. Overall, the study showed that shifts from strategic to communicative action are possible in an environment of mutual trust. This ultimately depends on creating conditions of interaction that place scientists’ and stakeholders’ knowledge on an equal footing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agricultural and forest productive diversification depends on multiple socioeconomic drivers—like knowledge, migration, productive capacity, and market—that shape productive strategies and influence their ecological impacts. Our comparison of indigenous and settlers allows a better understanding of how societies develop different diversification strategies in similar ecological contexts and how the related socioeconomic aspects of diversification are associated with land cover change. Our results suggest that although indigenous people cause less deforestation and diversify more, diversification is not a direct driver of deforestation reduction. A multidimensional approach linking sociocognitive, economic, and ecological patterns of diversification helps explain this contradiction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three teams consisting of 2 to 5 persons each play the game. Each team represents a farm. Each team decides jointly on its strategy. In annual meetings in winter, the farm teams jointly discuss, evaluate and decide on how to proceed and actions to be taken. The farms make use of three different pasture areas (village pasture, intensive pasture and summer pasture) for grazing their livestock. The carrying capacity of each pasture area is different and varies according to the season. In each season, the farms have to decide on how many livestock units to graze on which pasture. Overgrazing and pasture degradation occur if the total number of livestock units exceeds the carrying capacity of a specific pasture area. Overgrazing results in a reduction of pasture productivity. To diversify and improve their livelihood strategy farms can make individual investments to increase productivity at the farm level, eg. in fodder production or in income generating activities. At the community level, collective investments can be made which may influence livestock and household economy, e.g. rehabilitate and improve pasture productivity, improve living conditions on remote pastures etc. Events occurring in the course of the game represent different types of (risk) factors such as meteorology, market, politics etc. that may positively or negatively influence livestock production and household economy. A sustainable management of pastures requires that farms actively regulate the development of their herds, that they take measures to prevent pasture degradation and to improve pasture productivity, and that they find a balance between livestock economy and other productive activities. The game has a double aim: a) each farm aims at its economic success and prosperity, and b) the three farm teams jointly have to find and implement strategies for a sustainable use of pasture areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent decades, a number of global frameworks have been developed for disaster risk reduction (DRR). The Hyogo Framework for Action 2005–2015 and its successor document, the Sendai Framework for Disaster Risk Reduction, adopted in Japan in March 2015, provide general guidance for reducing risks from natural hazards. This is particularly important for mountainous areas, but DRR for mountain areas and sustainable mountain development received little attention in the recent policy debate. The question remains whether the Hyogo and Sendai frameworks can provide guidance for sustainable mountain development. This article evaluates the 2 frameworks in light of the special challenges of DRR in mountain areas and argues that, while the frameworks offer valuable guidance, they need to be further adapted for local contexts—particularly for mountain areas, which require special attention because of changing risk patterns like the effects of climate change and high land-use pressure.