960 resultados para sustainable buildings,
Resumo:
In Australia, the building and construction industry is taking significant steps towards the enhancement of environmental performance of the built environment. A large number of world class sustainable buildings have been constructed in recent years, offering researchers and practitioners alike a good opportunity to identify the best practices and real life experiences in delivering high performance buildings. A case study of ONE ONE ONE Eagle Street, a 6 Star Green Star office building in Brisbane, was conducted to investigate the best practice in achieving this “world leader” green office building. The study identified a number of key factors relating to project delivery system, contractor selection method, client’s early commitment, design integration, communication as major contributors to the successful delivery of this project. Additionally, key environmentally sustainable features and their cost implications were explored through in-depth interviews with the main contractor. The findings of this study will shed lights on the successful delivery of sustainable buildings and provide practical implications for different stakeholders.
Resumo:
Design-build (DB) is regarded as an effective means of delivering high performance green buildings, and the selection of DB contractors is of critical importance. The objective of this study is to evaluate the selection of design-builders for public buildings seeking Leadership in Energy and Environmental Design (LEED) certification and compare the selection practices involved with those of non-LEED-seeking DB projects through a robust content analysis of 74 DB request for proposals (RFPs) for public DB projects. The results of the content analysis reveal that the level of LEED certification is the dominant means of conveying the sustainability requirements in RFPs for contractor selection, with the majority of RFPs (60%) including sustainability requirements as part of the contractor evaluation package. With the exception of contractors' past performance, there is no statistically significant difference in the importance weightings of selection criteria between LEED-seeking and non-LEED-seeking buildings, and DB owners tend to place more emphasis on innovative technical solutions rather than the past performance of DB contractors. Additionally, the research findings also indicate that owners of LEED-seeking building projects tend to provide less design decisions in RFPs in order to solicit innovative design alternatives from potential DB contractors. This study provides DB owners with a number of practical implications for selecting appropriate design-builders for green DB projects.
Resumo:
This report is intended to contribute to strengthening the work of the Government, the Strategic Forum and the Specialist Engineering Alliance in bringing about a more integrated and a more sustainable industry. Its aim is to examine the potential for improving the sustainability of the built environment through an integrated approach to procurement and delivery, in which the role of the specialist engineering sector is recognised for its vital ability to improve building performance. Based on wide ranging knowledge and expertise across the construction sector, it puts forward a vision for sustainable buildings and sets out the actions needed from Government, clients, consultants, contractors and manufacturers to ensure the vision is realised. The report complements the Strategy for Sustainable Construction published by the Department for Business, Enterprise and Regulatory Reform (June 2008).
Resumo:
This thesis is aimed to initiate implementing sustainable building construction in the kingdom of Bahrain, i.e. Building-Integration PhotoVoltaic (BIPV) or Wind Energy (BIWE). It highlights the main constrains that discourage such modern concept in building and construction. Three groups have been questioned using a questionnaire. These are the policy and decision makers, the leading consultants and the contractors. The main constrains of the dissemination of BIVP and BIWE, according to the policy and decision makers, are: lack of knowledge and awareness of the public in sustainable technology, low cost of electricity, low cost of gas and oil and difficulty in applying local environmental taxes. The consultants had attributed the constrains to ignorance of life cycle cost of PV and Wind turbines systems, lack of education and knowledge in sustainable design, political system, shortage of markets importing sustainable technologies and client worries in profitability and pay-back period. The contractors are found to be very enthusiastic and ready to take over any sustainable building project and prefer to have a construction manger to coordinate between the design and contracting team. Design and Build is found the favorable procurement method in Bahrain for conducting BIPV or BIWE projects.
Resumo:
Two unique large buildings in the Kingdom of Bahrain were selected for make-over to sustainable buildings. These are the Almoayyed Tower (the first sky scraper) and the Bahrain International Circuit, BIC (The best world Formula 1 Circuit). The amount of electricity extracted from using renewable energy resource (solar and wind), integrated to the buildings-has been studied thoroughly. For the first building, the total solar electricity from the PV installed at the roof and the 4 vertical facades was found 3 017 500 kWh annually (3 million kWh), i.e. daily energy of 8219 kWh (enough to Supply electricity for 171 houses, each is rated as 2 kW house-in Europe the standard is 1.2 kW). This means that the annual solar electricity produced will be nearly 3 million kWh. This correspond to annual CO, reduction of 3000 t (assuming each kWh of energy from natural gas lead to emission of 1 kg of CO2). For the second building (BIC) the solar electricity from PV panels installed at the roof top, fixed at tilt angle of 26 degrees facing south, will provide annual solar electricity of is 2.8 x 10(6) kWh. The solar electricity from PV panels installed on the windows (12,000 m(2)) will be 45.3 x 10(6) kWh. This means that the total annual electrical power from PV panels (windows and roofs) will be nearly 12 MW (32 kW per day). The CO2 reduction will be 48,000 t. Under the carbon trading or CDM scheme the revenue (or the reward) would be (sic)480,000 million annually (the reward is (sic)10 per tonnes of CO2). The BIC circuit can have diversified electricity supply, i.e. from solar radiation (PV), from solar heat (CSP) and from wind (wind turbines), assuring its sustainability as well as reducing the CO2 emission.
Resumo:
This article presents the methodology and main results obtained in Spain within the FORMAR project, a European-funded project under the Leonardo Da Vinci scheme (Lifelong Learning Programme), whose main goal is to jointly develop training resources and modules to improve the skills on sustainability issues of buildings maintenance and refurbishment workers, in three different European countries: Spain, Portugal (Project Coordinator) and France. The Units of Short-term Training (UST) developed within this project are focused on the VET of carpenters, painters, bricklayers, building technicians and installers of solar panels, and a transversal unit containing basic concepts on sustainable construction and nearly Zero Energy Buildings (n-ZEB) is also developed. In parallel, clients’ guides for the aforementioned professionals are also implemented to improve the information provided to clients and owners in order to support the procurement decisions regarding building products and materials. Therefore, the project provides an opportunity to exchange experiences between organizations of these three European countries, as the UST will be developed simultaneously in each of them, exploring opportunities for training, guidance and exchange of experience. Even though the UST will have a common structure and contents, they will be slightly different in each country to adapt them to the different specific training needs and regulations of Spain, Portugal and France. This paper details, as a case study, the development process of the UST for carpenters and building technicians in Spain, including the analysis of needs and existing training materials, the main contents developed and the evaluation and testing process of the UST, which involves the active participation of several stakeholders of this sector as well as a classroom testing to obtain the students’ feedback.
Resumo:
The exchange pavilion offers a dialogue between two Expositions: 1998 in Brisbane and 2010 in Shanghai; and a chance to examine the impact that climate change will have on urban best practice outcomes in cities of the future. The Exchange exhibits the proposition that environmentally sustainable buildings need to interact responsively with a range of technical innovations to enable communities (and hence cities) to control and better manage their immediate environment. The 'Exchange' pavilion is a design experiment that integrates 3 key research elements: * An interactive digital exchange * A living green system wall (vertical and temporal) * A public urban star (horizontal and spatial) The proposition argues that the environmentally sustainability of any city is reliant on harnessing the full spectrum of intellectual and creative capital of the winder community (from universities to Government bodies to citizens) - a true knowledge city.
Resumo:
Energy efficiency of buildings is attracting significant attention from the research community as the world is moving towards sustainable buildings design. Energy efficient approaches are measures or ways to improve the energy performance and energy efficiency of buildings. This study surveyed various energy-efficient approaches for commercial building and identifies Envelope Thermal Transfer Value (ETTV) and Green applications (Living wall, Green facade and Green roof) as most important and effective methods. An in-depth investigation was carried out on these energy-efficient approaches. It has been found that no ETTV model has been developed for sub-tropical climate of Australia. Moreover, existing ETTV equations developed for other countries do not take roof heat gain into consideration. Furthermore, the relationship of ETTV and different Green applications have not been investigated extensively in any literature, and the energy performance of commercial buildings in the presence of Living wall, Green facade and Green roof has not been investigated in the sub-tropical climate of Australia. The study has been conducted in two phases. First, the study develops the new formulation, coefficient and bench mark value of ETTV in the presence of external shading devices. In the new formulation, roof heat gain has been included in the integrated heat gain model made of ETTV. In the 2nd stage, the study presents the relationship of thermal and energy performance of (a) Living wall and ETTV (b) Green facade and ETTV (c) Combination of Living wall, Green facade and ETTV (d) Combination of Living wall, Green Roof and ETTV in new formulations. Finally, the study demonstrates the amount of energy that can be saved annually from different combinations of Green applications, i.e., Living wall, Green facade; combination of Living wall and Green facade; combination of Living wall and Green roof. The estimations are supported by experimental values obtained from extensive experiments of Living walls and Green roofs.
Resumo:
The built environment is a major contributor to the world’s carbon dioxide emissions, with a considerable amount of energy being consumed in buildings due to heating, ventilation and air-conditioning, space illumination, use of electrical appliances, etc., to facilitate various anthropogenic activities. The development of sustainable buildings seeks to ameliorate this situation mainly by reducing energy consumption. Sustainable building design, however, is a complicated process involving a large number of design variables, each with a range of feasible values. There are also multiple, often conflicting, objectives involved such as the life cycle costs and occupant satisfaction. One approach to dealing with this is through the use of optimization models. In this paper, a new multi-objective optimization model is developed for sustainable building design by considering the design objectives of cost and energy consumption minimization and occupant comfort level maximization. In a case study demonstration, it is shown that the model can derive a set of suitable design solutions in terms of life cycle cost, energy consumption and indoor environmental quality so as to help the client and design team gain a better understanding of the design space and trade-off patterns between different design objectives. The model can very useful in the conceptual design stages to determine appropriate operational settings to achieve the optimal building performance in terms of minimizing energy consumption and maximizing occupant comfort level.
Resumo:
Some of the main challenges in Incorporating Sustainable Development practices into Engineering Education reside in establishing the bridge between concept and application. In particular the relation between value creation and the knowledge economy, innovation and entrepreneurship, as the main vehicles to a relevant application of the sustainable development concept, is not yet part of the majority of the engineering curricula in schools. Porto Polytechnical Engineering School (ISEP), a Global Reporting Initiative training partner in Portugal, as just presented its Sustainable Development Action Plan, with the main objective of creating a new kind of engineers, with Sustainable Development at the core of their degrees. The plan has several issues like publish an annual sustainability report, sustainable buildings, minimization of energy consumption and water policy, waste management, sustainable mobility, green procurement, EMAS certification, research and postgraduate activity and promotion of lectures and seminars in Sustainable Development.
Resumo:
The realisation that much of conventional. modern architecture is not sustainable over the long term is not new. Typical approaches are aimed at using energy and materials more efficiently. However, by clearly understanding the natural processes and their interactions with human needs in view, designers can create buildings that are delightful. functional productive and regenerative by design. The paper aims to review the biomimetics literature that is relevant to building materials and design. Biomimetics is the abstraction of good design from Nature, an enabling interdisciplinary science. particularly interested in emerging properties of materials and structures as a result of their hierarchical organisation. Biomimetics provides ideas relevant to: graded functionality of materials (nano-scale), adaptive response (nano-, micro-. and macro-scales): integrated intelligence (sensing and actuation at all scales), architecture and additional functionality. There are many examples in biology where emergent response of plants and animals to temperature, humidity and other changes in their physical environments is based on relatively simple physical principles. However, the implementation of design solutions which exploit these principles is where inspiration for man-made structures should be. We analyse specific examples of sustainability from Nature and the benefits or value that these solutions have brought to different creatures. By doing this, we appreciate how the natural world fits into the world of sustainable buildings and how as building engineers we can value its true application in delivering sustainable building.
Resumo:
The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.
Resumo:
The UK has adopted legally binding carbon reduction targets of 34% by 2020 and 80% by 2050 (measured against the 1990 baseline). Buildings are estimated to be responsible for more than 50% of greenhouse gas (GHG) emissions in the UK. These consist of both operational, produced during use, and embodied, produced during manufacture of materials and components, and during construction, refurbishments and demolition. A brief assessment suggests that it is unlikely that UK emission reduction targets can be met without substantial reductions in both Oc and Ec. Oc occurs over the lifetime of a building whereas the bulk of Ec occurs at the start of a building’s life. A time value for emissions could influence the decision making process when it comes to comparing mitigation measures which have benefits that occur at different times. An example might be the choice between building construction using low Ec construction materials versus building construction using high Ec construction materials but with lower Oc, although the use of high Ec materials does not necessarily imply a lower Oc. Particular time related issues examined here are: the urgency of the need to achieve large emissions reductions during the next 10 to 20 years; the earlier effective action is taken, the less costly it will be; future reduction in carbon intensity of energy supply; the carbon cycle and relationship between the release of GHG’s and their subsequent concentrations in the atmosphere. An equation is proposed, which weights emissions according to when they occur during the building life cycle, and which effectively increases Ec as a proportion of the total, suggesting that reducing Ec is likely to be more beneficial, in terms of climate change, for most new buildings. Thus, giving higher priority to Ec reductions is likely to result in a bigger positive impact on climate change and mitigation costs.