994 resultados para surface hardness
Resumo:
The aim of this study was to evaluate the following acrylic resins: Clássico®, QC-20® and Lucitone®, recommended specifically for thermal polymerization, and Acron MC® and VIPI-WAVE®, made for polymerization by microwave energy. The resins were evaluated regarding their surface nanohardness and modulus of elasticity, while varying the polymerization time recommended by the manufacturer. They were also compared as to the presence of water absorbed by the samples. The technique used was nanoindentation, using the Nano Indenter XP®, MTS. According to an intra-group analysis, when using the polymerization time recommended by the manufacturer, a variation of 0.14 to 0.23 GPa for nanohardness and 2.61 to 3.73 GPa for modulus of elasticity was observed for the thermally polymerized resins. The variation for the resins made for polymerization by microwave energy was 0.15 to 0.22 GPa for nanohardness and 2.94 to 3.73 GPa for modulus of elasticity. The conclusion was that the Classico® resin presented higher nanohardness and higher modulus of elasticity values when compared to those of the same group, while Acron MC® presented the highest values for the same characteristics when compared to those of the same group. The water absorption evaluation showed that all the thermal polymerization resins, except for Lucitone®, presented significant nanohardness differences when submitted to dehydration or rehydration, while only Acron MC® presented no significant differences when submitted to a double polymerization time. Regarding the modulus of elasticity, it was observed that all the tested materials and products, except for Lucitone®, showed a significant increase in modulus of elasticity when submitted to a lack of hydration.
Resumo:
Objective: This study aims to evaluate the degree of conversion (DC) and hydrolytic degradation through the Vickers hardness test (HV) of a nanofilled (Filtek™ Z-250, 3M) and a microhybrid (Filtek™Supreme-XT, 3M) composite resin. Materials and methods: Eight disk-shaped specimens (4 mm diameter × 2 mm thick, ISO 4049) of each material were prepared for each test. Composites were inserted into single increment in a metallic matrix and light-cured for 40 seconds. VH readings were performed for each specimen at predetermined intervals: immediately after polymerization (control), 1, 2, 3, 7, 14, 21, 30 and 180 days. After curing, initial hardness measurements were performed and the specimens were immersed in artificial saliva at 37°C. For DC (%), specimens were ground, pressed with KBr and analyzed by FT-IR spectrophotometer. Results: Student t-test showed that there was no difference between the resins for DC (p = 0.252). ANOVA analysis revealed that Z-250 VH means were all greater than S-XT, for both top and bottom surfaces, whatever the storage-period in artificial saliva (p < 0.001). After 180 days of storage, the hardness obtained for S-XT was similar with that at the baseline, for both top and bottom surfaces. While for Z-250 hardness was not significantly different from baseline only for top surface, but there was a significant decrease observed in hardness for bottom surface. Conclusion: The materials tested showed no evidence of hydrolytic degradation in a significant way, in a 6-month storagetime in artificial saliva. Nanofilled resin presents a monomer conversion comparable to the conventional microhybrid.
Resumo:
This study evaluated the effect of artificially accelerated aging (AAA) on the surface hardness of eight composite resins: Filtek Z250, Filtek Supreme, 4 Seasons, Herculite, P60, Tetric Ceram, Charisma, and Filtek Z100. Sixteen specimens were made from the test piece of each material, using an 8.0 × 2.0 mm teflon matrix. After 24 hours, eight specimens from each material were submitted to three surface hardness readings using a Shimadzu Microhardness Tester for 5 seconds at a load of 50 gf. The other eight specimens remained in the artificially accelerated aging machine for 382 hours and were submitted to the same surface hardness analysis. The means of each test specimen were submitted to the Kolmogorov-Smirnov test (p > 0.05), ANOVA and Tukey test (p < 0.05). With regard to hardness (F = 86.74, p < 0.0001) the analysis showed significant differences among the resin composite brands. But aging did not influence the hardness of any of the resin composites (F = 0.39, p = 0.53). In this study, there was interaction between the resin composite brand and the aging factors (F = 4.51, p < 0.0002). It was concluded that notwithstanding the type of resin, AAA did not influence surface hardness. However, with regard to hardness there was a significant difference among the resin brands.
Resumo:
This study investigated the surface hardening of steels via experimental tests using a multi-kilowatt fiber laser as the laser source. The influence of laser power and laser power density on the hardening effect was investigated. The microhardness analysis of various laser hardened steels was done. A thermodynamic model was developed to evaluate the thermal process of the surface treatment of a wide thin steel plate with a Gaussian laser beam. The effect of laser linear oscillation hardening (LLOS) of steel was examined. An as-rolled ferritic-pearlitic steel and a tempered martensitic steel with 0.37 wt% C content were hardened under various laser power levels and laser power densities. The optimum power density that produced the maximum hardness was found to be dependent on the laser power. The effect of laser power density on the produced hardness was revealed. The surface hardness, hardened depth and required laser power density were compared between the samples. Fiber laser was briefly compared with high power diode laser in hardening medium-carbon steel. Microhardness (HV0.01) test was done on seven different laser hardened steels, including rolled steel, quenched and tempered steel, soft annealed alloyed steel and conventionally through-hardened steel consisting of different carbon and alloy contents. The surface hardness and hardened depth were compared among the samples. The effect of grain size on surface hardness of ferritic-pearlitic steel and pearlitic-cementite steel was evaluated. In-grain indentation was done to measure the hardness of pearlitic and cementite structures. The macrohardness of the base material was found to be related to the microhardness of the softer phase structure. The measured microhardness values were compared with the conventional macrohardness (HV5) results. A thermodynamic model was developed to calculate the temperature cycle, Ac1 and Ac3 boundaries, homogenization time and cooling rate. The equations were numerically solved with an error of less than 10-8. The temperature distributions for various thicknesses were compared under different laser traverse speed. The lag of the was verified by experiments done on six different steels. The calculated thermal cycle and hardened depth were compared with measured data. Correction coefficients were applied to the model for AISI 4340 steel. AISI 4340 steel was hardened by laser linear oscillation hardening (LLOS). Equations were derived to calculate the overlapped width of adjacent tracks and the number of overlapped scans in the center of the scanned track. The effect of oscillation frequency on the hardened depth was investigated by microscopic evaluation and hardness measurement. The homogeneity of hardness and hardened depth with different processing parameters were investigated. The hardness profiles were compared with the results obtained with conventional single-track hardening. LLOS was proved to be well suitable for surface hardening in a relatively large rectangular area with considerable depth of hardening. Compared with conventional single-track scanning, LLOS produced notably smaller hardened depths while at 40 and 100 Hz LLOS resulted in higher hardness within a depth of about 0.6 mm.
Resumo:
This study analyzed degrees of demineralization in bovine enamel using synchrotron microcomputed tomography (SMCT) and hardness measurements (Knoop hardness number, KHN). For 5 days, 40 bovine enamel blocks were individually subjected to a pH cycling model and treatment with fluoride dentifrices (placebo, 275, 550 and 1,100 mu g F/g) diluted in deionized water twice a day. Surface hardness number and cross-sectional profiles of hardness and mineral concentration (by SMCT) were determined. Integrated hardness (KHN x mu m) for sound and demineralized specimens was calculated and subtracted to give the integrated loss of hardness (Delta KHN) for the lesions. Increasing fluoride concentration in the dentifrices led to higher values for surface hardness after pH cycling and mineral concentration (g(HAp) cm(-3)), and lower values for Delta KHN (p < 0.05). From the present results, it may be concluded that hardness measurements revealed demineralization in all groups, which was lower in groups treated with dentifrice with a higher F concentration. SMCT and hardness measurements gave similar results in areas with higher demineralization, but diverged in areas with lower demineralization. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Glassy polymeric carbon (GPC) is a useful material for medical applications due to its chemical inertness and biocompatible characteristics. Mitral and aortic and hydrocephalic valves are examples of GPC prosthetic devices that have been fabricated and commercialized in Brazil. In this work, ion beam was used to improve the mechanical characteristics of GPC surface and therefore to avoid the propagation of microcracks where the cardiac valves are more fragile. A control group of phenolic resin samples heat-treated at 300, 400, 700, 1000, 1500, and 2500 degrees C was characterized by measuring their hardness and Young's reduced elastic modulus with the depth of indentation. The control group was compared to results obtained with samples heat-treated at 700, 1000, and 1500 degrees C and bombarded with energetic ions of silicon, carbon, oxygen, and gold at energies of 5, 6, 8, and 10 MeV, respectively, with fluences between 10x10(13) and 10x10(16) ions/cm(2). GPC nonbombarded samples showed that hardness depends on the heat treatment temperature (HTT), with a maximum hardness for heat treatment at 1000 degrees C. The comparison between the control group and bombarded group also showed that hardness, after bombardment, had a greater increase for samples prepared at 700 degrees C than for samples prepared at higher temperatures. The Young's elastic modulus presents an exponential relationship with depth. The parameters obtained by fitting depend on the HTT and on the ion used in the bombardment more than on energy and fluence. The hardness results show clearly that bombardment can promote carbonization, increase the linkage between the chains of the polymeric material, and promote recombination of broken bonds in lateral groups that are more numerous for samples heat-treated at 700 degrees C. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Purpose: To evaluate the effect of the addition of sodium trimetaphosphate (TMP) with or without fluoride on enamel demineralization, and the hardness and release of fluoride and TMP of resin composites. Methods: Bovine enamel slabs (4x3x3 mm) were prepared and selected based on initial surface hardness (n= 96). Eight experimental resin composites were formulated, according to the combination of TMP and sodium fluoride (NaF): TMP/NaF-free (control), 1.6% sodium fluoride (NaF), and 1.5%, 14.1% and 36.8% TMP with and without 1.6% NaF. Resin composite specimens (n= 24) were attached to the enamel slabs with wax and the sets were subjected to pH cycling. Next, surface and cross-sectional hardness and fluoride content of enamel as well as fluoride and TNT release and hardness of the materials were evaluated. Data were statistically analyzed using ANOVA (P< 0.05). Results: The presence of fluoride in enamel was similar in fluoridated resin composites (P> 0.05), but higher than in the other materials (P< 0.05). The combination of 14.1% TMP and fluoride resulted in less demineralization, especially on lesion surface (P< 0.05). The presence of TMP increased fluoride release from the materials and reduced their hardness.
Resumo:
This study compared dentine demineralization induced by in vitro and in situ models, and correlated dentine surface hardness (SH), cross-sectional hardness (CSH) and mineral content by transverse microradiography (TMR). Bovine dentine specimens (n = 15/group) were demineralized in vitro with the following: MC gel (6% carboxymethylcellulose gel and 0.1 m lactic acid, pH 5.0, 14 days); buffer I (0.05 m acetic acid solution with calcium, phosphate and fluoride, pH 4.5, 7 days); buffer II (0.05 m acetic acid solution with calcium and phosphate, pH 5.0, 7 days), and TEMDP (0.05 m lactic acid with calcium, phosphate and tetraethyl methyl diphosphonate, pH 5.0, 7 days). In an in situ study, 11 volunteers wore palatal appliances containing 2 bovine dentine specimens, protected with a plastic mesh to allow biofilm development. The volunteers dripped a 20% sucrose solution on each specimen 4 times a day for 14 days. In vitro and in situ lesions were analyzed using TMR and statistically compared by ANOVA. TMR and CSH/SH were submitted to regression and correlation analysis (p < 0.05). The in situ model produced a deep lesion with a high R value, but with a thin surface layer. Regarding the in vitro models, MC gel produced only a shallow lesion, while buffers I and II as well as TEMDP induced a pronounced subsurface lesion with deep demineralization. The relationship between CSH and TMR was weak and not linear. The artificial dentine carious lesions induced by the different models differed significantly, which in turn might influence further de- and remineralization processes. Hardness analysis should not be interpreted with respect to dentine mineral loss
Resumo:
The purpose of this study is to evaluate the influence of the cutting parameters of high-speed machining milling on the characteristics of the surface integrity of hardened AISI H13 steel. High-speed machining has been used intensively in the mold and dies industry. The cutting parameters used as input variables were cutting speed (v c), depth of cut (a p), working engagement (a e) and feed per tooth (f z ), while the output variables were three-dimensional (3D) workpiece roughness parameters, surface and cross section microhardness, residual stress and white layer thickness. The subsurface layers were examined by scanning electron and optical microscopy. Cross section hardness was measured with an instrumented microhardness tester. Residual stress was measured by the X-ray diffraction method. From a statistical standpoint (the main effects of the input parameters were evaluated by analysis of variance), working engagement (a e) was the cutting parameter that exerted the strongest effect on most of the 3D roughness parameters. Feed per tooth (f z ) was the most important cutting parameter in cavity formation. Cutting speed (v c) and depth of cut (a p) did not significantly affect the 3D roughness parameters. Cutting speed showed the strongest influence on residual stress, while depth of cut exerted the strongest effect on the formation of white layer and on the increase in surface hardness.
Resumo:
To investigate the surface hardness (Vickers hardness, HVN) of one light-curing flowable resin composite and five dual-curing resin cements after different polymerization procedures.
Resumo:
SUMMARY The aim of this study was to evaluate the influence of surface roughness on surface hardness (Vickers; VHN), elastic modulus (EM), and flexural strength (FLS) of two computer-aided design/computer-aided manufacturing (CAD/CAM) ceramic materials. One hundred sixty-two samples of VITABLOCS Mark II (VMII) and 162 samples of IPS Empress CAD (IPS) were ground according to six standardized protocols producing decreasing surface roughnesses (n=27/group): grinding with 1) silicon carbide (SiC) paper #80, 2) SiC paper #120, 3) SiC paper #220, 4) SiC paper #320, 5) SiC paper #500, and 6) SiC paper #1000. Surface roughness (Ra/Rz) was measured with a surface roughness meter, VHN and EM with a hardness indentation device, and FLS with a three-point bending test. To test for a correlation between surface roughness (Ra/Rz) and VHN, EM, or FLS, Spearman rank correlation coefficients were calculated. The decrease in surface roughness led to an increase in VHN from (VMII/IPS; medians) 263.7/256.5 VHN to 646.8/601.5 VHN, an increase in EM from 45.4/41.0 GPa to 66.8/58.4 GPa, and an increase in FLS from 49.5/44.3 MPa to 73.0/97.2 MPa. For both ceramic materials, Spearman rank correlation coefficients showed a strong negative correlation between surface roughness (Ra/Rz) and VHN or EM and a moderate negative correlation between Ra/Rz and FLS. In conclusion, a decrease in surface roughness generally improved the mechanical properties of the CAD/CAM ceramic materials tested. However, FLS was less influenced by surface roughness than expected.
Resumo:
Objectives: To investigate surface roughness and microhardness of two recent resin-ceramic materials for computer-aided design/computer-aided manufacturing (CAD/CAM) after polishing with three polishing systems. Surface roughness and microhardness were measured immediately after polishing and after six months storage including monthly artificial toothbrushing. Methods: Sixty specimens of Lava Ultimate (3M ESPE) and 60 specimens of VITA ENAMIC (VITA Zahnfabrik) were roughened in a standardized manner and polished with one of three polishing systems (n=20/group): Sof-Lex XT discs (SOFLEX; three-step (medium-superfine); 3M ESPE), VITA Polishing Set Clinical (VITA; two-step; VITA Zahnfabrik), or KENDA Unicus (KENDA; one-step; KENDA Dental). Surface roughness (Ra; μm) was measured with a profilometer and microhardness (Vickers; VHN) with a surface hardness indentation device. Ra and VHN were measured immediately after polishing and after six months storage (tap water, 37°C) including monthly artificial toothbrushing (500 cycles/month, toothpaste RDA ~70). Ra- and VHN-values were analysed with nonparametric ANOVA followed by Wilcoxon rank sum tests (α=0.05). Results: For Lava Ultimate, Ra (mean [standard deviation] before/after storage) remained the same when polished with SOFLEX (0.18 [0.09]/0.19 [0.10]; p=0.18), increased significantly with VITA (1.10 [0.44]/1.27 [0.39]; p=0.0001), and decreased significantly with KENDA (0.35 [0.07]/0.33 [0.08]; p=0.03). VHN (mean [standard deviation] before/after storage) decreased significantly regardless of polishing system (SOFLEX: 134.1 [5.6]/116.4 [3.6], VITA: 138.2 [10.5]/115.4 [5.9], KENDA: 135.1 [6.2]/116.7 [6.3]; all p<0.0001). For VITA ENAMIC, Ra (mean [standard deviation] before/after storage) increased significantly when polished with SOFLEX (0.37 [0.18]/0.41 [0.14]; p=0.01) and remained the same with VITA (1.32 [0.37]/1.31 [0.40]; p=0.58) and with KENDA (0.81 [0.35]/0.78 [0.32]; p=0.21). VHN (mean [standard deviation] before/after storage) remained the same regardless of polishing system (SOFLEX: 284.9 [24.6]/282.4 [31.8], VITA: 284.6 [28.5]/276.4 [25.8], KENDA: 292.6 [26.9]/282.9 [24.3]; p=0.42-1.00). Conclusion: Surface roughness and microhardness of Lava Ultimate was more affected by storage and artificial toothbrushing than was VITA ENAMIC.
Resumo:
OBJECTIVE This study evaluated the differences in enamel color change, surface hardness, elastic modulus, and surface roughness between treatments with four bleaching gels containing carbamide peroxide (two at 10% and one each at 35%, and 45%) and two bleaching gels containing hydrogen peroxide (two at 40%). METHODS Enamel specimens were bleached and color changes were measured. Color change was calculated using either ΔE or the Bleaching Index (BI). Then, surface hardness, elastic modulus, and surface roughness of the enamel specimens were evaluated. All measurements were performed at baseline and directly after the first bleaching treatment for all carbamide peroxide- and hydrogen peroxide-containing bleaching gels. In addition, final measurements were made 24 hours after each of a total of 10 bleaching treatments for carbamide peroxide bleaching gels, and 1 week after each of a total of three bleaching treatments for hydrogen peroxide bleaching gels. RESULTS After the last bleaching treatment, respective ΔE scores were 17.6 and 8.2 for the two 10% carbamide peroxide gels, 12.9 and 5.6 for the 45% and 35% carbamide peroxide gels, and 9.6 and 13.9 for the two 40% hydrogen peroxide gels. The respective BI scores were -2.0 and -2.0 for the two 10% carbamide peroxide gels, -3.5 and -1.5 for the 45% and 35% carbamide peroxide gels, and -2.0 and -3.0 for the two 40% hydrogen peroxide gels. Each bleaching gel treatment resulted in significant whitening; however, no significant difference was found among the gels after the last bleaching. Whitening occurred within the first bleaching treatments and did not increase significantly during the remaining treatments. Surface hardness significantly decreased after the last bleaching treatment, when 10% carbamide peroxide was used. Furthermore, significant changes in the elastic modulus or surface roughness occurred only after treatment with 10% carbamide peroxide. CONCLUSION All six bleaching gels effectively bleached the enamel specimens independent of their concentration of peroxide. Gels with low peroxide concentration and longer contact time negatively affected the enamel surface.
Resumo:
Objectives. This study examined the depth of cure and surface microhardness of Filtek Z250 composite resin (3M-Espe) (shades B1, A3, and C4) when cured with three commercially available tight emitting diode (LED) curing lights [E-light (GC), Elipar Freelight (3M-ESPE), 475H (RF Lab Systems)], compared with a high intensity quartz tungsten halogen (HQTH) light (Kerr Demetron Optilux 501) and a conventional quartz tungsten halogen (QTH) lamp (Sirona S1 dental unit). Methods. The effects of light source and resin shade were evaluated as independent variables. Depth of cure after 40 s of exposure was determined using the ISO 4049:2000 method, and Vickers hardness determined at 1.0 mm intervals. Results. HQTH and QTH lamps gave the greatest depth of cure. The three LED lights showed similar performances across all parameters, and each unit exceeded the ISO standard for depth of cure except GC ELight for shade B1. In terms of shade, LED lights gave greater curing depths with A3 shade, while QTH and HQTH tights gave greater curing depths with C4 shade. Hardness at the resin surface was not significantly different between LED and conventional curing lights, however, below the surface, hardness reduced more rapidly for the LED lights, especially at depths beyond 3 mm. Significance. Since the performance of the three LED lights meets the ISO standard for depth of cure, these systems appear suitable for routine clinical application for resin curing. (C) 2003 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.