957 resultados para surface effect
Resumo:
Measurements of plasma parameters, including H- ion densities, made in conjunction with wall temperature, visible and vacuum ultraviolet emission spectroscopy verify that there is little caesium in the plasma volume of the H- ion source. Surface work function measurements indicate that there is significant caesium coverage of the inner walls of the ion source. It is found that, as the work function of a test surface decreases due to caesium seeding, the H- ion fraction in the discharge volume increases. These observations combine to indicate that, in the present source, the H- ion enhancement mechanism is a surface dominated effect. (C) 1999 American Institute of Physics. [S0003- 6951(99)04744-0].
Resumo:
A room temperature ferromagnetic hysteresis is observed in single crystal strontium titanate substrates as purchased from several manufacturers. It was found that polishing all sides of the substrates removed this observed hysteresis, suggesting that the origin of the ferromagnetic behavior resides on the surface of the substrates. X-ray diffraction and energy dispersive x-ray spectra were measured however they were unable to detect any impurity phases. In similar semiconducting oxides it was previously suggested that ferromagnetism could originate in oxygen vacancies or from disorder within the single crystal. To this end substrates were annealed in both air and vacuum in a range of temperatures (600°C to 1100°G) to both create bulk oxygen vacancies and to heal surface damage. Annealing in vacuum was found to create a measureable number of oxygen vacancies however their creation could not be correlated to the ferromagnetic signal of the substrate. Annealing in air was found to effect the remnant moment of the substrate as well as the width of the x-ray diffraction peaks on the unpolished face, weakly suggesting a relation between surface based disorder and ferromagnetism. Argon ion bombardment was employed to create a layer of surface disorder in the polished crystal, however it was not found to induce ferromagnetism. It was found that acid etching was sufficient to remove the ferromagnetism from as purchased samples and similarly simulated handling with stainless steel tweezers was sufficient to re-create the ferromagnetism. It is suggested that the origin of this ferromagnetism in SrTi03 is surface contaminants (mainly iron).
Resumo:
Several studies of the surface effect on bending properties of a nanowire (NW) have been conducted. However, these analyses are mainly based on theoretical predictions, and there is seldom integration study in combination between theoretical predictions and simulation results. Thus, based on the molecular dynamics (MD) simulation and different modified beam theories, a comprehensive theoretical and numerical study for bending properties of nanowires considering surface/intrinsic stress effects and axial extension effect is conducted in this work. The discussion begins from the Euler-Bernoulli beam theory and Timoshenko beam theory augmented with surface effect. It is found that when the NW possesses a relatively small cross-sectional size, these two theories cannot accurately interpret the true surface effect. The incorporation of axial extension effect into Euler-Bernoulli beam theory provides a nonlinear solution that agrees with the nonlinear-elastic experimental and MD results. However, it is still found inaccurate when the NW cross-sectional size is relatively small. Such inaccuracy is also observed for the Euler-Bernoulli beam theory augmented with both contributions from surface effect and axial extension effect. A comprehensive model for completely considering influences from surface stress, intrinsic stress, and axial extension is then proposed, which leads to good agreement with MD simulation results. It is thus concluded that, for NWs with a relatively small cross-sectional size, a simple consideration of surface stress effect is inappropriate, and a comprehensive consideration of the intrinsic stress effect is required.
Resumo:
Surface effect on the four independent elastic constants of nanohoneycombs is investigated in this paper. The axial deformation of the horizontal cell wall is included, comparing to the Gibson's method, and the contributions of the two components of surface stress (i.e. surface residual stress and surface elasticity) are discussed. The result shows that the regular hexagonal honeycomb is not isotropic but orthotropic. An increase in the cell-wall thickness t leads to an increase in the discrepancy of the Young's moduli in both directions. Furthermore, the surface residual stress dominates the surface effect on the elastic constants when t < 15 nm (or the relative density <0.17), which is in contrast to that the surface elasticity does when t > 15 nm (or the relative density > 0.17) for metal Al. The present structure and theory may be useful in the design of future nanodevices.
Resumo:
ZnO nanorod arrays with different morphologies were grown by metalorganic chemical vapor deposition (MOCVD). The diameters of nanorods range from 150 nm to 20 nm through changing the carrier gas flux during the growth process. Measurements such as scanning electron microscope (SEM), X-ray diffraction (XRD), Raman scattering and photoluminescence (pL) spectrum were employed to analyze the differences of these nanorods. It was found that when both carrier gas flux of Zn and O reactant are 1 SLM, we can obtain the best vertically aligned and uniform nanorods. Furthermore, the PL spectrum reveals a blueshift of UV emission peak, which may be assigned to the increase of surface effect.
Resumo:
The surface properties of the jellium model have been investigated by large supercell computations in the density functional theory-local spin-density (DFT-LSD) approach for planar slabs with up to 1000 electrons. A wide interval of densities has been explored, extending into the stability range of the Wigner crystal. Most computations have been carried out on nominally paramagnetic samples with an equal number of spin-up and spin-down electrons. The results show that within DFT-LSD spontaneous spin polarization and charge localization start nearly simultaneously at the surface for r(s) similar to 20, then, with decreasing density, they progress toward the center of the slab. Electrons are fully localized and spin polarized at r(s) = 30. At this density the charge distribution is the superposition of disjoint charge blobs, each corresponding to one electron. The distribution of blobs displays both regularities and disorder, the first being represented by well-defined planes and simple in-plane geometries, and the latter by a variety of surface defects. The surface energy, surface dipole, electric polarisability, and magnetization pattern have been determined as a function of density. All these quantities display characteristic anomalies at the density of the localization transition. The analysis of the low-frequency electric conductivity shows that in the fluid paramagnetic regime the in-plane current preferentially flows in the central region of the slab and the two spin channels are equally conducting. In the charge localized, spin-polarized regime, conductivity is primarily a surface effect, and an apparent asymmetry is observed in the two spin currents.
Resumo:
The surface activity of salts added to water is Air orders of magnitude lower than that of surfactants. Sodium trifluoromethanesulfonate (NaTf) produced a change in surface tension. with concentration, Delta gamma/Delta c, of -13.2 mN.L/m.mol. This value is ca. 4-fold larger than those of simple salts and that of methanesulfonate. This unexpected surface effect suggested that positively charged micelles containing Tf could exhibit interesting properties. Dodecyltrimethylammonium triflate (DTATf) had a higher Kraft temperature (37 degrees C) and a lower cmc (5 x 10(-3)M) and degree of dissociation (0.11) than the chloride and bromide salts of DTA. Above the Kraft temperature, at a characteristic temperature t(1), the addition of NaTf above 0.05 M. to a DTATf solution induced phase separation. By increasing the temperature of the two-phase system to above t(1), a homogeneous, transparent solution was obtained at a characteristic temperature t(2). These results, together with well-known triflate properties, led us to suggest that the Tf ion pairs With DTA and that the -CF(3) group may be dehydrated in the interfacial region, resulting in new and interesting self-aggregated structures.
Resumo:
The effect of unevenness in a bridge deck for the purpose of Structural Health Monitoring (SHM) under operational conditions is studied in this paper. The moving vehicle is modelled as a single degree of freedom system traversing the damaged beam at a constant speed. The bridge is modelled as an Euler-Bernoulli beam with a breathing crack, simply supported at both ends. The breathing crack is treated as a nonlinear system with bilinear stiffness characteristics related to the opening and closing of crack. The unevenness in the bridge deck considered is modelled using road classification according to ISO 8606:1995(E). Numerical simulations are conducted considering the effects of changing road surface classes from class A - very good to class E - very poor. Cumulant based statistical parameters, based on a new algorithm are computed on stochastic responses of the damaged beam due to passages of the load in order to calibrate the damage. Possibilities of damage detection and calibration under benchmarked and non-benchmarked cases are considered. The findings of this paper are important for establishing the expectations from different types of road roughness on a bridge for damage detection purposes using bridge-vehicle interaction where the bridge does not need to be closed for monitoring.
Resumo:
Nanowires (NWs) have attracted appealing and broad application owing to their remarkable mechanical, optical, electrical, thermal and other properties. To unlock the revolutionary characteristics of NWs, a considerable body of experimental and theoretical work has been conducted. However, due to the extremely small dimensions of NWs, the application and manipulation of the in situ experiments involve inherent complexities and huge challenges. For the same reason, the presence of defects appears as one of the most dominant factors in determining their properties. Hence, based on the experiments' deficiency and the necessity of investigating different defects' influence, the numerical simulation or modelling becomes increasingly important in the area of characterizing the properties of NWs. It has been noted that, despite the number of numerical studies of NWs, significant work still lies ahead in terms of problem formulation, interpretation of results, identification and delineation of deformation mechanisms, and constitutive characterization of behaviour. Therefore, the primary aim of this study was to characterize both perfect and defected metal NWs. Large-scale molecular dynamics (MD) simulations were utilized to assess the mechanical properties and deformation mechanisms of different NWs under diverse loading conditions including tension, compression, bending, vibration and torsion. The target samples include different FCC metal NWs (e.g., Cu, Ag, Au NWs), which were either in a perfect crystal structure or constructed with different defects (e.g. pre-existing surface/internal defects, grain/twin boundaries). It has been found from the tensile deformation that Young's modulus was insensitive to different styles of pre-existing defects, whereas the yield strength showed considerable reduction. The deformation mechanisms were found to be greatly influenced by the presence of defects, i.e., different defects acted in the role of dislocation sources, and many affluent deformation mechanisms had been triggered. Similar conclusions were also obtained from the compressive deformation, i.e., Young's modulus was insensitive to different defects, but the critical stress showed evident reduction. Results from the bending deformation revealed that the current modified beam models with the considerations of surface effect, or both surface effect and axial extension effect were still experiencing certain inaccuracy, especially for the NW with ultra small cross-sectional size. Additionally, the flexural rigidity of the NW was found to be insensitive to different pre-existing defects, while the yield strength showed an evident decrease. For the resonance study, the first-order natural frequency of the NW with pre-existing surface defects was almost the same as that from the perfect NW, whereas a lower first-order natural frequency and a significantly degraded quality factor was observed for NWs with grain boundaries. Most importantly, the <110> FCC NWs were found to exhibit a novel beat phenomenon driven by a single actuation, which was resulted from the asymmetry in the lattice spacing in the (110) plane of the NW cross-section, and expected to exert crucial impacts on the in situ nanomechanical measurements. In particular, <110> Ag NWs with rhombic, truncated rhombic, and triangular cross-sections were found to naturally possess two first-mode natural frequencies, which were envisioned with applications in NEMS that could operate in a non-planar regime. The torsion results revealed that the torsional rigidity of the NW was insensitive to the presence of pre-existing defects and twin boundaries, but received evident reduction due to grain boundaries. Meanwhile, the critical angle decreased considerably for defected NWs. This study has provided a comprehensive and deep investigation on the mechanical properties and deformation mechanisms of perfect and defected NWs, which will greatly extend and enhance the existing knowledge and understanding of the properties/performance of NWs, and eventually benefit the realization of their full potential applications. All delineated MD models and theoretical analysis techniques that were established for the target NWs in this research are also applicable to future studies on other kinds of NWs. It has been suggested that MD simulation is an effective and excellent tool, not only for the characterization of the properties of NWs, but also for the prediction of novel or unexpected properties.
Resumo:
We report on the mechanical properties of sodium titanate nanowires (Na2Ti3O7 NW) through a combination of bending experiments and theoretical analysis. Na2Ti3O7 NWs with lateral dimensions ranging from 20–700 nm were synthesized by a hydrothermal approach. A focused ion beam (FIB) was used to manipulate the selected Na2Ti3O7 NW over a hole drilled in an indium tin oxide substrate. After welding the nanowire, a series of bending tests was performed. It was observed that the Na2Ti3O7 NW exhibits a brittle behavior, and a nonlinear elastic deformation was observed before failure. By using the modified Euler–Bernoulli beam theory, such nonlinear elastic deformation is found to originate from a combination of surface effects and axial elongation (arising from the bending deformation). The effective Young's modulus of the Na2Ti3O7 NW was found to be independent of the wire length, and ranges from 21.4 GPa to 45.5 GPa, with an average value of 33 ± 7 GPa. The yield strength of the Na2Ti3O7 NW is measured at 2.7 ± 0.7 GPa.
Resumo:
This paper considers the dynamic modelling and motion control of a Surface Effect Ship (SES) for safer transfer of personnel and equipment from vessel to-and-from an offshore wind-turbine. Such a vessel is a key enabling factor for operation and maintenance (O&M) of offshore wind-energy infrastructure. The control system designed is referred to as Boarding Control System (BCS). We investigate the performance of this system for a specific wind-farm service vessel–The Wave Craft. A two-modality vessel model is presented to account for the vessel free motion and motion whilst in contact with a wind-turbine. On a SES, the pressurized air cushion carries the majority of the vessel mass. The control problem considered relates to the actuation of the pressure such that wave-induced vessel motions are minimized. This leads to a safer personnel transfer in developed sea-states than what is possible today. Results for the BCS is presented through simulation and model-scale craft testing.
Resumo:
This paper considers the dynamic modelling and motion control of a Surface Effect Ship (SES) for safer transfer of personnel and equipment from vessel to-and-from an offshore wind-turbine. The control system designed is referred to as Boarding Control System (BCS). The performance of this system is investigated for a specific wind-farm service vessel—The Wave Craft. On a SES, the pressurized air cushion supports the majority of the weight of the vessel. The control problem considered relates to the actuation of the pressure such that wave-induced vessel motions are minimized. Results are given through simulation, model- and full-scale experimental testing.
Resumo:
Silicon is known to be a very good material for the realization of high-Q, low-volume photonic cavities, but at the same it is usually considered as a poor material for nonlinear optical functionalities like second-harmonic generation, because its second-order nonlinear susceptibility vanishes in the dipole approximation. In this work we demonstrate that nonlinear optical effects in silicon nanocavities can be strongly enhanced and even become macroscopically observable. We employ photonic crystal nanocavities in silicon membranes that are optimized simultaneously for high quality factor and efficient coupling to an incoming beam in the far field. Using a low-power, continuous-wave laser at telecommunication wavelengths as a pump beam, we demonstrate simultaneous generation of second- and third harmonics in the visible region, which can be observed with a simple camera. The results are in good agreement with a theoretical model that treats third-harmonic generation as a bulk effect in the cavity region, and second-harmonic generation as a surface effect arising from the vertical hole sidewalls. Optical bistability is also observed in the silicon nanocavities and its physical mechanisms (optical, due to two-photon generation of free carriers, as well as thermal) are investigated. © 2011 IEEE.
Resumo:
Self-assembled semiconductor quantum dot is a new type of artificially designed and grown function material which exhibits quantum size effect, quantum interference effect, surface effect, quantum tunneling-Coulumb-blockade effect and nonlinear optical effect. Due to its advantages of less crystal defects and relatively simpler fabrication technology, this material may be of important value in the research of future nanoelectronic device. In the order of vertical transport, lateral transport and charge storage, recent advances in the electronic properties of this material are brefly introduced, and the problems and perspectives are analyzed.