991 resultados para surface cleaning, etching, patterning
Resumo:
Mode of access: Internet.
Resumo:
The conservation and valorisation of cultural heritage is of fundamental importance for our society, since it is witness to the legacies of human societies. In the case of metallic artefacts, because corrosion is a never-ending problem, the correct strategies for their cleaning and preservation must be chosen. Thus, the aim of this project was the development of protocols for cleaning archaeological copper artefacts by laser and plasma cleaning, since they allow the treatment of artefacts in a controlled and selective manner. Additionally, electrochemical characterisation of the artificial patinas was performed in order to obtain information on the protective properties of the corrosion layers. Reference copper samples with different artificial corrosion layers were used to evaluate the tested parameters. Laser cleaning tests resulted in partial removal of the corrosion products, but the lasermaterial interactions resulted in melting of the desired corrosion layers. The main obstacle for this process is that the materials that must be preserved show lower ablation thresholds than the undesired layers, which makes the proper elimination of dangerous corrosion products very difficult without damaging the artefacts. Different protocols should be developed for different patinas, and real artefacts should be characterised previous to any treatment to determine the best course of action. Low pressure hydrogen plasma cleaning treatments were performed on two kinds of patinas. In both cases the corrosion layers were partially removed. The total removal of the undesired corrosion products can probably be achieved by increasing the treatment time or applied power, or increasing the hydrogen pressure. Since the process is non-invasive and does not modify the bulk material, modifying the cleaning parameters is easy. EIS measurements show that, for the artificial patinas, the impedance increases while the patina is growing on the surface and then drops, probably due to diffusion reactions and a slow dissolution of copper. It appears from these results that the dissolution of copper is heavily influenced by diffusion phenomena and the corrosion product film porosity. Both techniques show good results for cleaning, as long as the proper parameters are used. These depend on the nature of the artefact and the corrosion layers that are found on its surface.
Resumo:
Acid etching promotes microporosities on enamel surface, which provide a better bonding surface to adhesive materials. The purpose of this study was to comparatively analyze the microstructure of enamel surface after etching with 37% phosphoric acid or with two self-etching primers, Non-rinse conditioner (NRC) and Clearfil SE Bond (CSEB) using scanning electron microscopy. Thirty sound premolars were divided into 3 groups with ten teeth each: Group 1: the buccal surface was etched with 37% phosphoric acid for 15 seconds; Group 2: the buccal surface was etched with NRC for 20 seconds; Group 3: the buccal surface was etched with CSEB for 20 seconds. Teeth from Group 1 were rinsed with water; teeth from all groups were air-dried for 15 seconds. After that, all specimens were processed for scanning electron microscopy and analyzed in a Jeol 6100 SEM. The results showed deeper etching when the enamel surface was etched with 37% phosphoric acid, followed by NRC and CSEB. It is concluded that 37% phosphoric acid is still the best agent for a most effective enamel etching.
Resumo:
Bovine bone ash is the main raw material for fabrication of bone china, a special kind of porcelain that has visual and mechanical advantages when compared to usual porcelains. The properties of bone china are highly dependent on the characteristics of the bone ash. However, despite a relatively common product, the science behind formulations and accepted fabrication procedures for bone china is not completely understood and deserves attention for future processing optimizations. In this paper, the influence of the preparation steps (firing, milling, and washing of the bones) on the physicochemical properties of bone ash particles was investigated. Bone powders heat-treated at temperatures varying from 700 to 1000 degrees C were washed and milled. The obtained materials were analyzed in terms of particle size distribution, chemical composition, density, specific surface area, FTIR spectroscopy, dynamic electrophoretic mobility, crystalline phases and scanning electron microscopy. The results indicated that bone ash does not significantly change in terms of chemistry and physical features at calcination temperatures above 700 degrees C. After washing in special conditions, one could only observe hydroxyapatite in the diffraction pattern. By FTIR it was observed that carbonate seems to be mainly concentrated on the surface of the powders. Since this compound can influence in the dispersion stability, and consequently in the quality of the final bone china product, and considering optimal washing parameters based on the dynamic electrophoretic mobility results, we describe a procedure for surface cleaning. (c) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
The aim of this study was to evaluate the persistence of methacrylate-based cement residues on the dentin, after dentin surface cleaning with ethanol or acetone, with or without previous application of a dentin adhesive. Forty bovine crown fragments were obtained and the dentin surface was washed with 1.0 mL of 2.5% sodium hypochlorite (NaOCl), followed by 0.1 mL of 17% ethylenediaminetetraacetic acid application for 3 min, and final irrigation with 2.5% NaOCl. The specimens were air dried and resin-based cement was rubbed onto the dentine surface with a microbrush applicator. In 20 specimens, previously to cement, a dentin adhesive was applied in all surfaces. After 15 min, the surface was scrubbed with a cotton pellet and moistened with ethanol or acetone, compounding the following groups: G199.5% ethanol and G2acetone, without previous use of dentin adhesive; G399.5% ethanol and G4acetone, with previous use of dentin adhesive. The dentin surface was scrubbed until the cement residues could not be visually detected. Sections were then processed for scanning electron microscopy and evaluated at 500x magnification and scores were attributed to each image according to the area covered by residual sealer, and data were subjected to KruskalWallis at 5% significance. The lower residue presence was observed in G3 (P = 0.005). All surface presented cement residues when acetone was used as cleaning solution (P = 0.0005). The cleaning solutions were unable to completely remove the cement residues from both surfaces. The ethanol used after previous application of the dentin adhesive promoted the lower presence of residues.
Resumo:
Résumé: Le développement de l’industrie des polymères fourni de plus en plus de choix pour la formulation de matériaux pour les couvre-planchers. Les caoutchoucs, le PVC et le linoleum sont les polymères habituellement utilisés dans l’industrie des couvre-planchers. Ce projet répond à un problème de facilité de nettoyage des couvre-planchers de caoutchouc qui sont reconnus pour être mous, collants et ayant une surface rugueuse. L’INTRODUCTION couvrira l’état actuel de la recherche sur les couvre-planchers, surtout en regard au problème de la «nettoyabilité». La théorie pertinente et les informations générales sur les polymères, les composites polymériques et la science des surfaces seront introduites au CHAPITRE 1. Ensuite, le CHAPITRE 2 couvrira la méthode utilisée pour déterminer la nettoyabilité, l’évaluation des résultats ainsi que l’équipement utilise. Le CHAPITRE 3, discutera des premières expériences sur l’effet de la mouillabilité, la rugosité et la dureté sur la facilité de nettoyage des polymères purs. Plusieurs polymères ayant des surfaces plus ou moins hydrophobes seront investigués afin d’observer leur effet sur la nettoyabilité. L’effet de la rugosité sur la nettoyabilité sera investigué en imprimant une rugosité définie lors du moulage des échantillons; l’influence de la dureté sera également étudiée. Ensuite, un modèle de salissage/nettoyage sera établi à partir de nos résultats et observations afin de rationaliser les facteurs, ou « règles », qui détrminent la facilité de nettoyage des surfaces. Finalement, la réticulation au peroxyde sera étudiée comme une méthode de modification des polymères dans le but d’améliorer leur nettoyabilité; un mécanisme découlant des résultats de ces études sera présenté. Le CHAPITRE 4 étendra cette recherche aux mélanges de polymères; ces derniers servent habituellement à optimiser la performance des polymères purs. Dans ce chapitre, les mêmes tests discutés dans le CHAPITRE 3 seront utilisés pour vérifier le modèle de nettoyabilité établi ci-haut. De plus, l’influence de la non-miscibilité des mélanges de polymères sera discutée du point de vue de la thermodynamique (DSC) et de la morphologie (MEB). L’utilisation de la réticulation par peroxyde sera étudié dans les mélanges EPDM/ (E-ran-MAA(Zn)-ran-BuMA) afin d’améliorer la compatibilité de ces polymères. Les effets du dosage en agent de réticulation et du temps de cuisson seront également examinés. Finalement, un compatibilisant pré-réticulé a été développé pour les mélanges ternaires EPDM/ (E-ran-MAA(Zn)-ran-BuMA)/ HSR; son effet sur la nettoyabilité et sur la morphologie du mélange sera exposé.
Resumo:
The aim of this review is to present and discuss the applications of ultrasound in electrochemical systems such as in sonoelectroanalysis and sonoelectrolysis for the electrochemical combustion of organic compounds. Initially, theoretical and experimental aspects are discussed, particularly those related to the enhancement of mass transport and the surface cleaning effects. Some results are included to illustrate alternative geometries for the experimental measurements and the working electrodes used in these systems. In the sequence, the available publications are presented and discussed to demonstrate that ultrasound combined with electrochemical techniques is a powerful set-up for the detection of analytes such as metals and/or organic compounds in hostile media and for the effective destruction of toxic organic substances. At the end, a table summarizes the results already published in the literature.
Resumo:
As ligações adesivas têm sido cada vez mais utilizadas nos últimos anos em detrimento de outros métodos tais como a soldadura, ligações aparafusadas e ligações rebitadas. Os plásticos de Engenharia têm um papel cada vez mais preponderante na indústria, devido às suas excelentes propriedades. Neste trabalho foram considerados três polímeros diferentes, o Policloreto de Vinilo (PVC) e o Polipropileno (PP) dado o seu baixo custo e peso e a superfície quimicamente inerte e o Politetrafluoretileno (PTFE) devido às suas boas propriedades químicas e excelentes propriedades de deslizamento. No entanto, estes materiais possuem uma baixa energia de superfície e, por isso, são muito difíceis de colar com mais relevância para o PTFE. Assim, após um estudo preliminar foi escolhido, para realizar as colagens necessárias, um adesivo da Tamarron Technology “Tam Tech Adhesive”, próprio para este tipo de substratos difíceis de colar. Posteriormente foi efetuada a sua caraterização através de ensaios de provetes maciços à tração. O principal objetivo deste trabalho foi estudar juntas de sobreposição simples de materiais poliméricos difíceis de colar tais como o PTFE, PP e PVC com recurso a um adesivo que não necessitasse de preparação de superfície. Foram fabricadas juntas de sobreposição simples (JSS) segundo os métodos Lap Shear (LS) e Block Shear (BS) dos três materiais referidos anteriormente e realizados os respetivos ensaios para avaliar o comportamento mecânico das ligações adesivas. Os materiais utilizados como substratos foram também submetidos a ensaios de tração com a finalidade de obter o módulo de elasticidade e as suas propriedades de resistência. Os substratos envolvidos nas juntas adesivas não sofreram qualquer preparação especial das superfícies. Na maioria dos casos consistiu apenas numa limpeza das superfícies com álcool etílico. Contudo, para o PTFE também se experimentou a preparação por abrasão com lixa e por chama. Foi também efetuado um trabalho de simulação numérica por elementos finitos utilizando um modelo de dano coesivo triangular. As resistências ao corte obtidas são superiores em BS comparativamente a LS, exceção feita aos substratos de PTFE aonde os resultados são similares. O tratamento por chama melhorou a resistência mecânica das juntas. Verificou-se também que o modelo numérico simulou adequadamente o comportamento das juntas principalmente das LS.
Resumo:
Contemporary painting places, and will continue to place, several questions about its meaning, its chemical nature, its durability and the best way to preserve it. This research aims at putting together comprehensive data on vinyl based paints, including their components, their properties, their aging behavior and their response to selected cleaning products. In this project degradation mechanisms of vinyl binders and formulations used in the 20th and 21st century were studied. Stability over time of selected vinyl polymers was assessed through natural indoor and artificially aging. The objective was to enhance knowledge and understanding of vinyl emulsion formulations and their performance over time. Overall conservation state of pictorial layers namely, adhesion, cohesion and discoloration of selected case studies from the Portuguese artist Julião Sarmento (b.1948) was correlated with the observed molecular level changes studied in laboratory experiments. Sarmento’s paintings were chosen due to conservation concerns (discoloration) on some of his works from the 90’s. Besides, research was carried out to start increasing the knowledge of what can be expected of PVAc based paints in terms of response to conservation treatments namely, surface cleaning. Artificial aging showed that the most recent formulations which are based on a poly(vinyl acetate), poly(vinyl chloride) and polyethylene terpolymer are less stable when compared to some homopolymer formulations. From the four pigments studied, titanium dioxide rutile and a carbon based black proved to be stabilizers for both types of polymer. The mixture lithopone plus calcium carbonate has showed to have a photocatalytic effect on the binders. The studied paintings showed to be in an overall good state of conservation except for the paintings created in the 90’s with white glue and a mixture of white lithoponeand calcium carbonate. Discoloration of this white paint seems to be irreversible and ongoing and is still a major concern. The disapearance of the plasticizer was the only change detected. The current works created by Sarmento are expected to be more stable as they were painted using the rutile titanium dioxide. Immersion/cleaning tests showed that vinyl based paints can be susceptible to water and organic solvents like ethanol as some evidences point to the removal/diffusion of additives from the paint. The observations made point to the need to further proceed in this research field.
Resumo:
A research project involving 2, 3, 4, and 5 in. (5.1, 7.6, 10.2, and 12.7 cm) of bonded portland cement concrete (PCC) overlay on a 1.3 mile (2.1 km) PCC pavement was conducted in Clayton County, Iowa, during September 1977, centering on the following objectives: (1) Determine the mixing and proportioning procedures required in using a conventional, central mix proportioning plant to produce a dense PCC mixture using standard mixes with super water reducing admixtures; (2) Determine the economics, longevity and maintenance performance of a bonded, thin-lift, non-reinforced PCC resurfacing course using conventional procedures, equipment and concrete paving mixtures both with and without super water reducing admixtures; and (3) Determine if an adequate bond between the existing pavement and an overlay of thin-lift, dense, non-reinforced PCC can be obtained with only special surface cleaning and no surface removal or grinding. The conclusions are as follows: (1) Normal mixing equipment and proportioning procedures could be used using a conventional central-mix proportioning plant. This was successful when used with super water reducing admixtures. Only minor changes need be made in procedures and timing. (2) The time has been too short since the completion of the project to determine how the new pavement will perform, however, initially it appears that the method is economical and no reason is seen at this time why the life of the pavement should not be comparable to an all new pavement. (3) The initial test results show that bond strength, regardless of which method of cleaning is used, scarifying, sand blasting or water blasting, far exceed what is considered the minimum bond strength of 200 psi (1379 kPa) except where the paint stripes were intentionally left, thus showing that the paint must be removed. (4) It appears that either cement and water grout or sand, cement and water grout may be used and still obtain the required bond.
Resumo:
A Research Project involving two, three, four and five inches of bonded Portland Cement Concrete Overlay on a 1.3 mile Portland Cement Concrete pavement was conducted in Clayton County, Iowa, during September, 1977, centering on the following objectives: 1. Determine the mixing and proportioning procedures required in using a conventional, central mix proportioning plant to produce a dense Portland Cement Concrete mixture using standard mixes with super-water reducing admixtures; 2. Determine the economics, longevity and maintenance performance of a bonded, thin-lift, non-reinforced Portland Cement Concrete resurfacing course using conventional procedures, equipment and concrete paving mixtures both with and without super-water reducing admixtures; 3. Determine if an adequate bond between the existing pavement and an overlay of thin-lift, dense, non-reinforced Portland Cement Concrete can be obtained with only special surface cleaning and no surface removal or grinding.
Resumo:
Lipases have received great attention as industrial biocatalysts in areas like oils and fats processing, detergents, baking, cheese making, surface cleaning, or fine chemistry . They can catalyse reactions of insoluble substrates at the lipid-water interface, preserving their catalytic activity in organic solvents. This makes of lipases powerful tools for catalysing not only hydrolysis, but also various reverse reactions such as esterification, transesterification, aminolysis, or thiotransesterifications in anhydrous organic solvents. Moreover, lipases catalyse reactions with high specificity, regio and enantioselectivity, becoming the most used enzymes in synthetic organic chemistry. Therefore, they display important advantages over classical catalysts, as they can catalyse reactions with reduced side products, lowered waste treatment costs, and under mild temperature and pressure conditions. Accordingly, the use of lipases holds a great promise for green and economical process chemistry.
Resumo:
Objectives: To evaluate the shear bond strength and site of failure of brackets bonded to dry and wet enamel. Study design: 50 teeth were divided into ten groups of 5 teeth each (10 surfaces). In half the groups enamel was kept dry before bonding, and in the other half distilled water was applied to wet the surface after etching. The following groups were established: 1)Acid/Transbond-XT (dry/wet) XT; 2) Transbond Plus Self Etching Primer (TSEP)/Transbond-XT paste (dry/wet); 3) Concise (dry), Transbond MIP/Concise (wet), 4) FujiOrtho-LC (dry/wet); 5) SmartBond (dry/wet). Brackets were bonded to both buccal and lingual surfaces. Specimens were stored in distilled water (24 hours at 37ºC) and thermocycled. Brackets were debonded using a Universal testing machine (cross-head speed 1 mm/min). Failure sites were classified using a stereomicroscope. Results: No significant differences in bond strength were detected between the adhesives under wet and dry conditions except for Smart- Bond, whose bond strength was significantly lower under dry conditions. For all the adhesives most bond failures were of mixed site location except for Smartbond, which failed at the adhesive-bracket interface. Conclusions: Under wet conditions the bonding capacity of the adhesives tested was similar than under dry conditions, with the exception of SmartBond which improved under wet conditions
Resumo:
Lipases have received great attention as industrial biocatalysts in areas like oils and fats processing, detergents, baking, cheese making, surface cleaning, or fine chemistry . They can catalyse reactions of insoluble substrates at the lipid-water interface, preserving their catalytic activity in organic solvents. This makes of lipases powerful tools for catalysing not only hydrolysis, but also various reverse reactions such as esterification, transesterification, aminolysis, or thiotransesterifications in anhydrous organic solvents. Moreover, lipases catalyse reactions with high specificity, regio and enantioselectivity, becoming the most used enzymes in synthetic organic chemistry. Therefore, they display important advantages over classical catalysts, as they can catalyse reactions with reduced side products, lowered waste treatment costs, and under mild temperature and pressure conditions. Accordingly, the use of lipases holds a great promise for green and economical process chemistry.