993 resultados para surface charges


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structures of digestive lysozymes 1 and 2 from housefly (MdL1 and MdL2) show that S106-T107 delimit a polar pocket around E32 (catalytic acid/base) and N46 contributes to the positioning of 050 (catalytic nucleophile), whereas those residues are replaced by V109-A110 and D48 in the non-digestive lysozyme from hen egg-white (HEWL). Further analyses revealed that MdL1 and MdL2 surfaces are less positively charged than HEWL surface. To verify the relevance of these differences to the acidic pH optimum of digestive lysozymes it was determined that pKas of the catalytic residues of the triple mutant MdL2 (N46D-S106V-T107A) are similar to HEWL pKas and higher than those for MdL2. In agreement, triple mutant MdL2 and HEWL exhibits the same pH optimum upon methylumbelliferylchitotrioside. In addition to that, the introduction of six basic residues on MdL1 surface increased by 1 unit the pH optimum for the activity upon bacterial walls. Thus, the acidic pH optimum for MdL2 and MdL1 activities upon methylumbelliferylchitotrioside is determined by the presence of N46, S106 and T107 in the environment of their catalytic residues, which favors pKas reduction. Conversely, acidic pH optimum upon bacterial walls is determined by a low concentration of positive charges on the MdL2 and MdL1 surfaces. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A scanning force microscope was converted to an electrostatic force microscope by charging the usually neutral cantilever with phospholipids. The electrostatic force microscope was used to study surface electrostatic charges of samples in aqueous solutions. Lysozymes, DEAE-Sephadex beads, 3-propyltriethoxysilane-treated glass and mica were imaged in water or phosphate buffer with electrostatic force microscopy. The adhesion force measured when a charged probe and oppositely charged specimen interacted was up to 500 times greater than when a bare probe was used. This dramatic increase in measured adhesion force can be attributed to the energy required to break the salt bridges formed between the charged probe and the specimen. The use of phospholipids to functionalize the cantilever tip allows the incorporation of other biomolecules and ligands that can be used as biologically specific tips (e.g., receptors, drugs) for the study of intermolecular interactions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ag nanoparticles and Fe-coated Si micrograins were separately deposited onto Si(1 0 0) surfaces and then exposed to an Ar + CH4 microplasma at atmospheric pressure. For the Ag nanoparticles, self-organized carbon nanowires, up to 400 nm in length were produced, whereas for the Fe-coated Si micrograins carbon connections with the length up to 100 μm were synthesized on the plasma-exposed surface area of about 0.5 mm2. The experiment has revealed that long carbon connections and short nanowires demonstrate quite similar behavior and structure. While most connections/nanowires tended to link the nearest particles, some wires were found to 'dissolve' into the substrate without terminating at the second particle. Both connections and nanowires are mostly linear, but long carbon connections can form kinks which were not observed in the carbon nanowire networks. A growth scenario explaining the carbon structure nucleation and growth is proposed. Multiscale numerical simulations reveal that the electric field pattern around the growing connections/nanowires strongly affects the surface diffusion of carbon adatoms, the main driving force for the observed self-organization in the system. The results suggest that the microplasma-generated surface charges can be used as effective controls for the self-organized formation of complex carbon-based nano-networks for integrated nanodevices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phospholipid (PL) molecules form the main structure of the membrane that prevents the direct contact of opposing articular cartilage layers. In this paper we conceptualise articular cartilage as a giant reverse micelle (GRM) in which the highly hydrated three-dimensional network of phospholipids is electrically charged and able to resist compressive forces during joint movement, and hence loading. Using this hypothetical base, we describe a hydrophilic-hydrophilic (HL-HL) biopair model of joint lubrication by contacting cartilages, whose mechanism is reliant on lamellar cushioning. To demonstrate the viability of our concept, the electrokinetic properties of the membranous layer on the articular surface were determined by measuring via microelectrophoresis, the adsorption of ions H, OH, Na and Cl on phospholipid membrane of liposomes, leading to the calculation of the effective surface charge density. The surface charge density was found to be -0.08 ± 0.002 cm-2 (mean ± S.D.) for phospholipid membranes, in 0.155 M NaCl solution and physiological pH. This value was approximately five times less than that measured in 0.01 M NaCl. The addition of synovial fluid (SF) to the 0.155 M NaCl solution reduced the surface charge density by 30% which was attributed to the binding of synovial fluid macromolecules to the phospholipid membrane. Our experiments show that particles charge and interact strongly with the polar core of RM. We demonstrate that particles can have strong electrostatic interactions when ions and macromolecules are solubilized by reverse micelle (RM). Since ions are solubilized by reverse micelle, the surface entropy influences the change in the charge density of the phospholipid membrane on cartilage surfaces. Reverse micelles stabilize ions maintaining equilibrium, their surface charges contribute to the stability of particles, while providing additional screening for electrostatic processes. © 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanorod forms of metal oxides is recognised as one of the most remarkable morphologies. Their structure and functionality have driven important advancements in a vast range of electronic devices and applications. In this work, we postulate a novel concept to explain how numerous localised surface states can be engineered into the bandgap of niobium oxide nanorods using tungsten. We discuss their contributions as local state surface charges for the modulation of a Schottky barrier height, relative dielectric constant and their respective conduction mechanisms. Their effect on the hydrogen gas molecule interactions mechanisms are also examined herein. We synthesised niobium tungsten oxide (Nb17W2O25) nanorods via a hydrothermal growth method and evaluated the Schottky barrier height, ideality factor, dielectric constant and trap energy level from the measured I-V vs temperature characteristics in the presence of air and hydrogen to show the validity of our postulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report on the chemical synthesis of the arrays of silicon oxide nanodots and their self-organization on the surface via physical processes triggered by surface charges. The method based on chemically active oxygen plasma leads to the rearrangement of nanostructures and eventually to the formation of groups of nanodots. This behavior is explained in terms of the effect of electric field on the kinetics of surface processes. The direct measurements of the electric charges on the surface demonstrate that the charge correlates with the density and arrangement of nanodots within the array. Extensive numerical simulations support the proposed mechanism and prove a critical role of the electric charges in the self-organization. This simple and environment-friendly self-guided process could be used in the chemical synthesis of large arrays of nanodots on semiconducting surfaces for a variety of applications in catalysis, energy conversion and storage, photochemistry, environmental and biosensing, and several others.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formation of long self-organized carbon connections (where the length is much greater than the diameter) between Ag nanoparticles on a Si(1 0 0) surface in atmospheric pressure Ar + CH4 microplasmas is demonstrated. A growth scenario explaining the connection nucleation and growth is proposed, and this is supported by numerical simulations which reveal that the electric field pattern around the growing connections affects the surface diffusion of carbon adatoms, the main driving force for the observed self-organization. Results suggest that the microplasma-generated surface charges can be used as effective controls for the self-organized formation of complex carbon-based nano-networks for integrated nanodevices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cold atmospheric-pressure plasma jets have recently attracted enormous interest owing to numerous applications in plasma biology, health care, medicine, and nanotechnology. A dedicated study of the interaction between the upstream and downstream plasma plumes revealed that the active species (electrons, ions, excited OH, metastable Ar, and nitrogen-related species) generated by the upstream plasma plume enhance the propagation of the downstream plasma plume. At gas flows exceeding 2 l/min, the downstream plasma plume is longer than the upstream plasma plume. Detailed plasma diagnostics and discharge species analysis suggest that this effect is due to the electrons and ions that are generated by the upstream plasma and flow into the downstream plume. This in turn leads to the relatively higher electron density in the downstream plasma. Moreover, high-speed photography reveals a highly unusual behavior of the plasma bullets, which propagate in snake-like motions, very differently from the previous reports. This behavior is related to the hydrodynamic instability of the gas flow, which results in non-uniform distributions of long-lifetime active species in the discharge tube and of surface charges on the inner surface of the tube.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Controlling the morphological structure of titanium dioxide (TiO 2) is crucial for obtaining superior power conversion efficiency for dye-sensitized solar cells. Although the sol-gel-based process has been developed for this purpose, there has been limited success in resisting the aggregation of nanostructured TiO2, which could act as an obstacle for mass production. Herein, we report a simple approach to improve the efficiency of dye-sensitized solar cells (DSSC) by controlling the degree of aggregation and particle surface charge through zeta potential analysis. We found that different aqueous colloidal conditions, i.e., potential of hydrogen (pH), water/titanium alkoxide (titanium isopropoxide) ratio, and surface charge, obviously led to different particle sizes in the range of 10-500 nm. We have also shown that particles prepared under acidic conditions are more effective for DSSC application regarding the modification of surface charges to improve dye loading and electron injection rate properties. Power conversion efficiency of 6.54%, open-circuit voltage of 0.73 V, short-circuit current density of 15.32 mA/cm2, and fill factor of 0.73 were obtained using anatase TiO 2 optimized to 10-20 nm in size, as well as by the use of a compact TiO2 blocking layer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo do presente trabalho é comparar, do ponto de vista elétrico, a membrana do neurônio ganglionar com a da célula de neuroblastoma, analisando os efeitos das cargas fixas sobre o potencial elétrico nas superfícies da bicamada lipídica e também sobre o comportamento do perfil de potencial através da membrana, considerando as condiçõesfísico-químicas do estado de repouso e do estado de potencial de ação. As condições para a ocorrência dos referidos estados foram baseadas em valores numéricos de parâmetros elétricos e químicos, característicos dessas células, obtidos na literatura. O neurônio ganglionar exemplifica um neurônio sadio, e a célula de neuroblastoma, que é uma célula tumoral, exemplifica um neurônio patológico, alterado por esta condição. O neuroblastoma é um tumor que se origina das células da crista neural (neuroblastos), que é uma estrutura embrionária que dá origem a muitas partes do sistema nervoso, podendo surgir em diversos locais do organismo, desde a região do crânio até a área mais inferior da coluna. O modelo adotado para simular a membrana de neurônio inclui: (a) as distribuições espaciais de cargas elétricas fixas no glicocálix e na rede de proteínas citoplasmáticas; (b) as distribuições de cargas na solução eletrolítica dos meios externo e interno; e (c) as cargas superficiais da bicamada lipídica. Os resultados que obtivemos mostraram que, nos estados de repouso e de ação, os potenciais superficiais da bicamada interno (ÁSbc) e externo (ÁSgb) da célula de neuroblastoma não sofrem alteração mensurável, quando a densidade de carga na superfície interna (QSbc) torna-se 50 vezes mais negativa, tanto para uma densidade de carga na superfície externa da bicamada nula (QSgb = 0), como para um valor de QSgb 6= 0. Porém, no estado de repouso, uma leve queda em ÁSbc do neur^onio ganglionar pode ser observada com este nível de variação de carga, sendo que ÁSgb do neurônio ganglionar é mais negativo quando QSgb = 1=1100 e/A2. No estado de ação, para QSgb = 0, o aumento da negatividade de QSbc não provoca alteração detectável de ÁSbc e ÁSgb para os dois neurônios. Quando consideramos QSgb = 1=1100 e/A2, ÁSgb do neurônio ganglionar se torna mais negativo, não se observando variações detectáveis nos potenciais superficiais da célula de neuroblastoma. Tanto no repouso quanto no estado de ação, ÁSgb das duas células não sofre variação sensível com o aumento da negatividade da carga fixa distribuída espacialmente no citoplasma. Já a ÁSbc sofre uma queda gradativa nos dois tipos celulares; porém, no estado de ação, esta queda é mais rápida. Descobrimos diferenças importantes nos perfis de potencial das duas células, especialmente na região do glicocálix.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo do presente trabalho foi estudar o comportamento dos potenciais superficiais e do perfil de potencial atraves da membrana de eritr ocito em func ao da forca i onica e das cargas superficiais, usando um modelo que leva em conta as cargas el etricas do glicoc alix e das proteınas citoplasm aticas, al em das cargas superficiais da bicamada lipıdica e os efeitos dos eletr olitos divalentes. Programas especıficos em linguagem C foram elaborados para o c alculo desses potenciais, tomando como dados num ericos resultados experimentais de medidas de mobilidade eletrofor etica de eritr ocitos para diferentes valores de forca i onica. Neste c alculo, o metodo para tratamento dos dados eletrofor eticos indicado por Hsu et al.[57] foi incluıdo em nosso modelo. A equac ao de Poisson-Boltzmann nao linear foi resolvida por computac ao num erica, usando o metodo de Runge-Kutta de quarta ordem, obtendo-se os perfis de potencial. Os resultados mostraram que a estimativa da densidade de carga el etrica na superfıcie de c elulas usando a equac ao cl assica de Helmholtz-Smoluchowski conduz a valores que nao conseguem refletir as forcas que regem o comportamento eletrofor etico das mesmas. O presente modelo gerou valores de potenciais superficiais e perfis de potencial para a membrana do eritr ocito bem distintos daqueles obtidos anteriormente para um modelo descrito por uma equac ao de Poisson-Boltzmann linear. Nossos resultados confirmam que a avaliac ao de parametros el etricos superficiais da membrana de eritr ocito, envolvendo dados oriundos de eletroforese, deve incluir c alculos hidrodin amicos al em de eletroest aticos, como sugerido por Hsu et al. [57].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Almost free-standing single crystal mesoscale and nanoscale dots of ferroelectric BaTiO(3) have been made by direct focused ion beam patterning of bulk single crystal material. The domain structures which appear in these single crystal dots, after cooling through the Curie temperature, were observed to form into quadrants, with each quadrant consisting of fine 90 degrees stripe domains. The reason that these rather complex domain configurations form is uncertain, but we consider and discuss three possibilities for their genesis: first, that the quadrant features initially form to facilitate field-closure, but then develop 90 degrees shape compensating stripe domains in order to accommodate disclination stresses; second, that they are the result of the impingement of domain packets which nucleate at the sidewalls of the dots forming "Forsbergh" patterns (essentially the result of phase transition kinetics); and third, that 90 degrees domains form to conserve the shape of the nanodot as it is cooled through the Curie temperature but arrange into quadrant packets in order to minimize the energy associated with uncompensated surface charges (thus representing an equilibrium state). While the third model is the preferred one, we note that the second and third models are not mutually exclusive.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dextran sulfate (DS)/poly-L-lysine (PLL) microcapsules are fabricated by an in situ coacervation method using DS-doped CaCO3 microparticles as templates. Twinned superstructures or spherical CaCO3 microparticles are produced depending on DS concentration in the starting Solution. DS/PLL microcapsules with ellipsoidal or spherical outline are obtained after removal of templates in disodium ethylene diamine tetraacetate dehydrate (EDTA) without PLL. Their shell thickness and negative surface charges increase with the DS weight percentage in the templates. The surface potential of DS/PLL microcapsules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A folate-conjugated copolymer PEG-PLA-PLL/folate was synthesized and mixed with pure PEG-PLA-PLL and a fluorescent model drug mFITC to prepare folate-conjugated micelles. The distribution of micelles was studied on cancer-cell-bearing mice via frozen slicing. The results show that mFITC is successfully encapsulated into folate(+) and folate(-)micelles; PEG-PLA-PLL micelles the latter can be internalized by both HeLa and CHO cells without selectivity due to their cationic surface charges, while folate(+)micelles exhibit more preferential endocytosis by HeLa cells than by CHO cells. The folate(-)micelles showed retention in both organs and tumors. The folate(+)micelles are a promising active targeting drug delivery system for FR over-expressing cells and they accumulate in tumor beds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly(L-lactide) (PLLA) and poly(epsilon-caprolactone) (PCL) ultrafine fibers were prepared by electrospinning. The influence of cationic and anionic surfactants on their enzymatic degradation behavior was investigated by measuring weight loss, molecular weight, crystallinity, and melting temperature of the fibers as a function of degradation time. Under the catalysis of proteinase K, the PLLA fibers containing the anionic surfactant sodium docecyl sulfate (SDS) exhibited a faster degradation rate than those containing cationic surfactant triethylbenzylammonium chloride (TEBAC), indicating that surface electric charge on the fibers is a critical factor for an enzymatic degradation. Similarly, TEBAC-containing PCL fibers exhibited a 47% weight loss within 8.5 h whereas SDS-containing PCL fibers showed little degradation in the presence of lipase PS. By analyzing the charge status of proteinase K and lipase PS under the experimental conditions, the importance of the surface charges of the fibers and their interactions with the charges on the enzymes were revealed. Consequently, a "two-step" degradation mechanism was proposed: (1) the enzyme approaches the fiber surface; (2) the enzyme initiates hydrolysis of the polymer.