964 resultados para supervisory control and data acquisition.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"PB2005-917005."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network data packet capture and replay capabilities are basic requirements for forensic analysis of faults and security-related anomalies, as well as for testing and development. Cyber-physical networks, in which data packets are used to monitor and control physical devices, must operate within strict timing constraints, in order to match the hardware devices' characteristics. Standard network monitoring tools are unsuitable for such systems because they cannot guarantee to capture all data packets, may introduce their own traffic into the network, and cannot reliably reproduce the original timing of data packets. Here we present a high-speed network forensics tool specifically designed for capturing and replaying data traffic in Supervisory Control and Data Acquisition systems. Unlike general-purpose "packet capture" tools it does not affect the observed network's data traffic and guarantees that the original packet ordering is preserved. Most importantly, it allows replay of network traffic precisely matching its original timing. The tool was implemented by developing novel user interface and back-end software for a special-purpose network interface card. Experimental results show a clear improvement in data capture and replay capabilities over standard network monitoring methods and general-purpose forensics solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Gaia space mission is a major project for the European astronomical community. As challenging as it is, the processing and analysis of the huge data-flow incoming from Gaia is the subject of thorough study and preparatory work by the DPAC (Data Processing and Analysis Consortium), in charge of all aspects of the Gaia data reduction. This PhD Thesis was carried out in the framework of the DPAC, within the team based in Bologna. The task of the Bologna team is to define the calibration model and to build a grid of spectro-photometric standard stars (SPSS) suitable for the absolute flux calibration of the Gaia G-band photometry and the BP/RP spectrophotometry. Such a flux calibration can be performed by repeatedly observing each SPSS during the life-time of the Gaia mission and by comparing the observed Gaia spectra to the spectra obtained by our ground-based observations. Due to both the different observing sites involved and the huge amount of frames expected (≃100000), it is essential to maintain the maximum homogeneity in data quality, acquisition and treatment, and a particular care has to be used to test the capabilities of each telescope/instrument combination (through the “instrument familiarization plan”), to devise methods to keep under control, and eventually to correct for, the typical instrumental effects that can affect the high precision required for the Gaia SPSS grid (a few % with respect to Vega). I contributed to the ground-based survey of Gaia SPSS in many respects: with the observations, the instrument familiarization plan, the data reduction and analysis activities (both photometry and spectroscopy), and to the maintenance of the data archives. However, the field I was personally responsible for was photometry and in particular relative photometry for the production of short-term light curves. In this context I defined and tested a semi-automated pipeline which allows for the pre-reduction of imaging SPSS data and the production of aperture photometry catalogues ready to be used for further analysis. A series of semi-automated quality control criteria are included in the pipeline at various levels, from pre-reduction, to aperture photometry, to light curves production and analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The future power grid will effectively utilize renewable energy resources and distributed generation to respond to energy demand while incorporating information technology and communication infrastructure for their optimum operation. This dissertation contributes to the development of real-time techniques, for wide-area monitoring and secure real-time control and operation of hybrid power systems. ^ To handle the increased level of real-time data exchange, this dissertation develops a supervisory control and data acquisition (SCADA) system that is equipped with a state estimation scheme from the real-time data. This system is verified on a specially developed laboratory-based test bed facility, as a hardware and software platform, to emulate the actual scenarios of a real hybrid power system with the highest level of similarities and capabilities to practical utility systems. It includes phasor measurements at hundreds of measurement points on the system. These measurements were obtained from especially developed laboratory based Phasor Measurement Unit (PMU) that is utilized in addition to existing commercially based PMU’s. The developed PMU was used in conjunction with the interconnected system along with the commercial PMU’s. The tested studies included a new technique for detecting the partially islanded micro grids in addition to several real-time techniques for synchronization and parameter identifications of hybrid systems. ^ Moreover, due to numerous integration of renewable energy resources through DC microgrids, this dissertation performs several practical cases for improvement of interoperability of such systems. Moreover, increased number of small and dispersed generating stations and their need to connect fast and properly into the AC grids, urged this work to explore the challenges that arise in synchronization of generators to the grid and through introduction of a Dynamic Brake system to improve the process of connecting distributed generators to the power grid.^ Real time operation and control requires data communication security. A research effort in this dissertation was developed based on Trusted Sensing Base (TSB) process for data communication security. The innovative TSB approach improves the security aspect of the power grid as a cyber-physical system. It is based on available GPS synchronization technology and provides protection against confidentiality attacks in critical power system infrastructures. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Process Control Systems (PCSs) or Supervisory Control and Data Acquisition (SCADA) systems have recently been added to the already wide collection of wireless sensor networks applications. The PCS/SCADA environment is somewhat more amenable to the use of heavy cryptographic mechanisms such as public key cryptography than other sensor application environments. The sensor nodes in the environment, however, are still open to devastating attacks such as node capture, which makes designing a secure key management challenging. In this paper, a key management scheme is proposed to defeat node capture attack by offering both forward and backward secrecies. Our scheme overcomes the pitfalls which Nilsson et al.'s scheme suffers from, and is not more expensive than their scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given there is currently a migration trend from traditional electrical supervisory control and data acquisition (SCADA) systems towards a smart grid based approach to critical infrastructure management. This project provides an evaluation of existing and proposed implementations for both traditional electrical SCADA and smart grid based architectures, and proposals a set of reference requirements which test bed implementations should implement. A high-level design for smart grid test beds is proposed and initial implementation performed, based on the proposed design, using open source and freely available software tools. The project examines the move towards smart grid based critical infrastructure management and illustrates the increased security requirements. The implemented test bed provides a basic framework for testing network requirements in a smart grid environment, as well as a platform for further research and development. Particularly to develop, implement and test network security related disturbances such as intrusion detection and network forensics. The project undertaken proposes and develops an architecture of the emulation of some smart grid functionality. The Common Open Research Emulator (CORE) platform was used to emulate the communication network of the smart grid. Specifically CORE was used to virtualise and emulate the TCP/IP networking stack. This is intended to be used for further evaluation and analysis, for example the analysis of application protocol messages, etc. As a proof of concept, software libraries were designed, developed and documented to enable and support the design and development of further smart grid emulated components, such as reclosers, switches, smart meters, etc. As part of the testing and evaluation a Modbus based smart meter emulator was developed to provide basic functionality of a smart meter. Further code was developed to send Modbus request messages to the emulated smart meter and receive Modbus responses from it. Although the functionality of the emulated components were limited, it does provide a starting point for further research and development. The design is extensible to enable the design and implementation of additional SCADA protocols. The project also defines an evaluation criteria for the evaluation of the implemented test bed, and experiments are designed to evaluate the test bed according to the defined criteria. The results of the experiments are collated and presented, and conclusions drawn from the results to facilitate discussion on the test bed implementation. The discussion undertaken also present possible future work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supervisory Control and Data Acquisition (SCADA) systems are one of the key foundations of smart grids. The Distributed Network Protocol version 3 (DNP3) is a standard SCADA protocol designed to facilitate communications in substations and smart grid nodes. The protocol is embedded with a security mechanism called Secure Authentication (DNP3-SA). This mechanism ensures that end-to-end communication security is provided in substations. This paper presents a formal model for the behavioural analysis of DNP3-SA using Coloured Petri Nets (CPN). Our DNP3-SA CPN model is capable of testing and verifying various attack scenarios: modification, replay and spoofing, combined complex attack and mitigation strategies. Using the model has revealed a previously unidentified flaw in the DNP3-SA protocol that can be exploited by an attacker that has access to the network interconnecting DNP3 devices. An attacker can launch a successful attack on an outstation without possessing the pre-shared keys by replaying a previously authenticated command with arbitrary parameters. We propose an update to the DNP3-SA protocol that removes the flaw and prevents such attacks. The update is validated and verified using our CPN model proving the effectiveness of the model and importance of the formal protocol analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The operation of power systems in a Smart Grid (SG) context brings new opportunities to consumers as active players, in order to fully reach the SG advantages. In this context, concepts as smart homes or smart buildings are promising approaches to perform the optimization of the consumption, while reducing the electricity costs. This paper proposes an intelligent methodology to support the consumption optimization of an industrial consumer, which has a Combined Heat and Power (CHP) facility. A SCADA (Supervisory Control and Data Acquisition) system developed by the authors is used to support the implementation of the proposed methodology. An optimization algorithm implemented in the system in order to perform the determination of the optimal consumption and CHP levels in each instant, according to the Demand Response (DR) opportunities. The paper includes a case study with several scenarios of consumption and heat demand in the context of a DR event which specifies a maximum demand level for the consumer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A supervisory control and data acquisition (SCADA) system is an integrated platform that incorporates several components and it has been applied in the field of power systems and several engineering applications to monitor, operate and control a lot of processes. In the future electrical networks, SCADA systems are essential for an intelligent management of resources like distributed generation and demand response, implemented in the smart grid context. This paper presents a SCADA system for a typical residential house. The application is implemented on MOVICON™11 software. The main objective is to manage the residential consumption, reducing or curtailing loads to keep the power consumption in or below a specified setpoint, imposed by the costumer and the generation availability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing and intensive integration of distributed energy resources into distribution systems requires adequate methodologies to ensure a secure operation according to the smart grid paradigm. In this context, SCADA (Supervisory Control and Data Acquisition) systems are an essential infrastructure. This paper presents a conceptual design of a communication and resources management scheme based on an intelligent SCADA with a decentralized, flexible, and intelligent approach, adaptive to the context (context awareness). The methodology is used to support the energy resource management considering all the involved costs, power flows, and electricity prices leading to the network reconfiguration. The methodology also addresses the definition of the information access permissions of each player to each resource. The paper includes a 33-bus network used in a case study that considers an intensive use of distributed energy resources in five distinct implemented operation contexts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supervisory Control and Data Acquisition (SCADA) systems control and monitor industrial and critical infrastructure functions, such as electricity, gas, water, waste, railway, and traffic. Recent attacks on SCADA systems highlight the need for stronger SCADA security. Thus, sharing SCADA traffic data has become a vital requirement in SCADA systems to analyze security risks and develop appropriate security solutions. However, inappropriate sharing and usage of SCADA data could threaten the privacy of companies and prevent sharing of data. In this paper, we present a privacy preserving strategy-based permutation technique called PPFSCADA framework, in which data privacy, statistical properties and data mining utilities can be controlled at the same time. In particular, our proposed approach involves: (i) vertically partitioning the original data set to improve the performance of perturbation; (ii) developing a framework to deal with various types of network traffic data including numerical, categorical and hierarchical attributes; (iii) grouping the portioned sets into a number of clusters based on the proposed framework; and (iv) the perturbation process is accomplished by the alteration of the original attribute value by a new value (clusters centroid). The effectiveness of the proposed PPFSCADA framework is shown through several experiments on simulated SCADA, intrusion detection and network traffic data sets. Through experimental analysis, we show that PPFSCADA effectively deals with multivariate traffic attributes, producing compatible results as the original data, and also substantially improving the performance of the five supervised approaches and provides high level of privacy protection. © 2014 Published by Elsevier B.V. All rights reserved.