680 resultados para sulfated phenols
Resumo:
During the biological evolution, marine macroalgae have developed biochemicals tools in order to utilize components of seawater such as sulfates and halogens, to produce a variety of chemicals (secondary metabolites).This review shows and discuss the occurrence of sulfated and/or halogenated phenolic compounds in seaweeds.
Resumo:
Lignin phenols were measured in the sediments of Sepitiba Bay, Rio de Janeiro, Brazil and in bedload sediments and suspended sediments of the four major fluvial inputs to the bay: Sao Francisco and Guandu Channels and the Guarda and Cacao Rivers. Fluvial suspended lignin yields (Sigma 8 3.5-14.6 mgC 10 g dw(-1)) vary little between the wet and dry seasons and are poorly correlated with fluvial chlorophyll concentrations (0.8-50.2 mu gC L(-1)). Despite current land use practices that favor grassland agriculture or industrial uses, fluvial lignin compositions are dominated by a degraded leaf-sourced material. The exception is the Guarda River, which has a slight influence from grasses. The Lignin Phenol Vegetation Index, coupled with acid/aldehyde and 3.5 Db/V ratios, indicate that degraded leaf-derived phenols are also the primary preserved lignin component in the bay. The presence of fringe Typha sp. and Spartina sp. grass beds surrounding portions of the Bay are not reflected in the lignin signature. Instead, lignin entering the bay appears to reflect the erosion of soils containing a degraded signature from the former Atlantic rain forest that once dominated the watershed, instead of containing a significant signature derived from current agricultural uses. A three-component mixing model using the LPVI, atomic N:C ratios, and stable carbon isotopes (which range between -26.8 and -21.8 parts per thousand) supports the hypothesis that fluvial inputs to the bay are dominated by planktonic matter (78% of the input), with lignin dominated by leaf (14% of the input) over grass (6%). Sediments are composed of a roughly 50-50 mixture of autochthonous material and terrigenous material, with lignin being primarily sourced from leaf. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We have isolated and characterized ol-conotoxin EpI, a novel sulfated peptide from the venom of the molluscivorous snail, Conus episcopatus, The peptide was classified as an cy-conotoxin based on sequence, disulfide connectivity, and pharmacological target. EpI has ho mology to sequences of previously described cu-conotoxins, particularly PnIA, PnIB, and ImI, However, EpI differs from previously reported conotoxins in that it has a sulfotyrosine residue, identified by amino acid analysis and mass spectrometry, Native EpI was shown to coelute with synthetic EpI, The peptide sequence is consistent with most, but not all, recognized criteria for predicting tyrosine sulfation sites in proteins and peptides, The activities of synthetic EpI and its unsulfated analogue [Tyr(15)]EpI were similar. Both peptides caused competitive inhibition of nicotine action on bovine adrenal chromaffin cells (neuronal nicotinic ACh receptors) but had no effect on the rat phrenic nerve-diaphragm (muscle nicotinic ACh receptors), Both EpI and [Tyr(15)]EpI partly inhibited acetylcholine-evoked currents in isolated parasympathetic neurons of rat intracardiac ganglia, These results indicate that EPI and [Tyr(15)]EpI selectively inhibit alpha 3 beta 2 and alpha 3 beta 4 nicotinic acetylcholine receptors.
Resumo:
Percutaneous transluminal coronary angioplasty is a frequently used interventional technique to reopen arteries that have narrowed because of atherosclerosis. Restenosis, or renarrowing of the artery shortly after angioplasty, is a major limitation to the success of the procedure and is due mainly to smooth muscle cell accumulation in the artery wall at the site of balloon injury. In the present study, we demonstrate that the antiangiogenic sulfated oligosaccharide, PI-88, inhibits primary vascular smooth muscle cell proliferation and reduces intimal thickening 14 days after balloon angioplasty of rat and rabbit arteries. PI-88 reduced heparan sulfate content in the injured artery wall and prevented change in smooth muscle phenotype. However, the mechanism of PI-88 inhibition was not merely confined to the antiheparanase activity of this compound. PI-88 blocked extracellular signal-regulated kinase-1/2 (ERK1/2) activity within minutes of smooth muscle cell injury. It facilitated FGF-2 release from uninjured smooth muscle cells in vitro, and super-released FGF-2 after injury while inhibiting ERK1/2 activation. PI-88 inhibited the decrease in levels of FGF-2 protein in the rat artery wall within 8 minutes of injury. PI-88 also blocked injury-inducible ERK phosphorylation, without altering the clotting time in these animals. Optical biosensor studies revealed that PI-88 potently inhibited (K-i 10.3 nmol/L) the interaction of FGF-2 with heparan sulfate. These findings show for the first time the capacity of this sulfated oligosaccharide to directly bind FGF-2, block cellular signaling and proliferation in vitro, and inhibit injury-induced smooth muscle cell hyperplasia in two animal models. As such, this study demonstrates a new role for PI-88 as an inhibitor of intimal thickening after balloon angioplasty. The full text of this article is available online at http://www.circresaha.org.
Resumo:
Polysaccharides from the red alga Phacelocarpos peperocarpos were extracted with hot water, clarified, and precipitated with 2-propanol. The native preparation was highly sulfated (36.2% w/w). Alkali modification decreased the sulfate content by 2.0% w/w. The alkali-modified polysaccharide is composed mostly of galactose (Gal, 51 mol%) and 3,6-anhydrogalactose (AnGal, 41 mol%), with minor amounts of a mono-O-methylgalactose (MeGal, 1 mol%), xylose (Xyl, 6 mol%), and glucose (Glc, 1 mol%). The FTIR spectrum of the alkali-modified polysaccharide resembled K-carrageenan with absorption at 930 cm(-1) (indicative of AnGal) and 850 cm(-1) (Gal ii-sulfate). However, an additional, major band of absorption occurred at 820 cm(-1) indicating the presence of equatorial sulfate ester substitution at O-6 of Gal residues, A combination of linkage and C-13 NMR spectroscopic analyses showed that the polysaccharide was composed predominantly of a novel repeating-unit, O-beta-D-galactopyranosyl 4,6-disulfate)-(1 --> 4)-3,6-anhydro-alpha-D-galactopyranose. Minor structural variations also occurred, including alternative patterns of sulfation and the presence of terminal Xylp, The location of the terminal Xylp residues was not certain but evidence supported their attachment at O-3 of some 4-linked Galp residues. The cell-wall galactans remain unchanged during the life cycle of the alga. (C) 1996 Elsevier Science Ltd.
Exploring the bioavailability of (poly)phenols from berries and their potential activities in humans
Resumo:
(Poly)phenols are the most widely distributed secondary metabolites, in plants, and, therefore, are regular constituents of human food products. The regular ingestion of (poly)phenol-containing foods has been associated with a reduced risk of acquiring chronic diseases and many studies are currently trying to corroborate this theory. However, the precise contribution of (poly)phenols to disease prevention is still unknown.(...)
Resumo:
The urinary steroid profile is constituted by anabolic androgenic steroids, including testosterone and its relatives, that are extensively metabolized into phase II sulfated or glucuronidated steroids. The use of liquid chromatography coupled to mass spectrometry (LC-MS) is an issue for the direct analysis of conjugated steroids, which can be used as urinary markers of exogenous steroid administration in doping analysis, without hydrolysis of the conjugated moiety. In this study, a sensitive and selective ultra high-pressure liquid chromatography coupled to quadrupole time-of-flight mass spectrometer (UHPLC-QTOF-MS) method was developed to quantify major urinary metabolites simultaneously after testosterone intake. The sample preparation of the urine (1 mL) was performed by solid-phase extraction on Oasis HLB sorbent using a 96-well plate format. The conjugated steroids were analyzed by UHPLC-QTOF-MS(E) with a single-gradient elution of 36 min (including re-equilibration time) in the negative electrospray ionization mode. MS(E) analysis involved parallel alternating acquisitions of both low- and high-collision energy functions. The method was validated and applied to samples collected from a clinical study performed with a group of healthy human volunteers who had taken testosterone, which were compared with samples from a placebo group. Quantitative results were also compared to GC-MS and LC-MS/MS measurements, and the correlations between data were found appropriate. The acquisition of full mass spectra over the entire mass range with QTOF mass analyzers gives promise of the opportunity to extend the steroid profile to a higher number of conjugated steroids.
Resumo:
A sensitive RP-HPLC method with UV detection successfully measured phenol(s) in an ointment containing 3% Stryphnodendron adstringens extract. Chromatography used acetonitrile (0.05% trifluoroacetic acid):water (0.05% trifluoroacetic acid) (v/v), flow rate 0.8 mL min-1. Quantitation was accomplished by the external-standard method. Linearity for 2.00 to 16.00 μg mL-1 (gallic acid) and 1.14 to 18.24 μg mL-1 (gallocatechin) was established. Intra- and inter-day precision levels were under 5%. LOD and LOQ were 0.231 and 0.770 μg mL-1 (gallic acid) and 0.151 and 0.504 μg mL-1 (gallocatechin), respectively. Determination of phenols was unaffected by product excipients.
Resumo:
Two new sulfated oligobromophenols from the marine red algae Osmundaria obtusiloba, 4-(1'-potassium sulfate, 2,3-dibromo, 1',4,5-trihydroxybenzyl) - 4''-(1'''-potassium sulfate, 2'',3''-dibromo, 1''',4'',5''-trihydroxybenzyl) sulfate and 1'-(2, 3-dibromo, 4-potassium sulfate, 1', 4, 5-trihydroxybenzyl) - 4''-(1''' potassium sulfate, 2'', 3''-dibromo, 1''', 4'', 5'' trihydroxybenzyl) sulfate, are herein reported. Besides them it was obtained 2, 2', 3, 3'-tetrabromo-4, 4', 5, 5'-tetrahydroxydiphenylmethane, 2, 3-dibromo-p-hydroxybenzyl methyl ether (methyl lanosol), dipotassium 2,3-dibromo-5-hydroxybenzyl 1',4-disulfate, 24-methylenecolest-5-en-3-beta-ol and alpha-D-mannopyranosyl-(1->2')-glycerate (digeneaside). The structures were determined by analysis of the spectroscopic data (IR, NMR and MS) and comparison with the literature. The 13CNMR data for dipotassium 2,3-dibromo-5hydroxybenzyl-1',4-disulfate are described here for the first time. The present study also suggests a mild method to isolate and to purify sulfated compounds.
Resumo:
Astroglial cells derived from lateral and medial midbrain sectors differ in their abilities to support neuritic growth of midbrain neurons in cocultures. These different properties of the two types of cells may be related to the composition of their extracellular matrix. We have studied the synthesis and secretion of sulfated glycosaminoglycans (GAGs) by the two cell types under control conditions and ß-D-xyloside-stimulated conditions, that stimulate the ability to synthesize and release GAGs. We have confirmed that both cell types synthesize and secrete heparan sulfate and chondroitin sulfate. Only slight differences were observed between the proportions of the two GAGs produced by the two types of cells after a 24-h labeling period. However, a marked difference was observed between the GAGs produced by the astroglial cells derived from lateral and medial midbrain sectors. The medial cells, which contain derivatives of the tectal and tegmental midline radial glia, synthesized and secreted ~2.3 times more chondroitin sulfate than lateral cells. The synthesis of heparan sulfate was only slightly modified by the addition of ß-D-xyloside. Overall, these results indicate that astroglial cells derived from the two midbrain sectors have marked differences in their capacity to synthesize chondroitin sulfate. Under in vivo conditions or a long period of in vitro culture, they may produce extracellular matrix at concentrations which may differentially affect neuritic growth.
Resumo:
We report the antinociceptive activity, determined by the writhing, formalin and hot-plate tests in mice, of crude (F0/60), lectin and carbohydrate fractions isolated by ammonium sulfate precipitation (0 to 60%) from Bryothamnion seaforthii and B. triquetrum, species of red algae. Not only fraction F0/60 but also lectins from both species significantly inhibited acetic acid-induced abdominal contractions after intraperitoneal or oral administrations. In the formalin test, lectins (1 and 5 mg/kg, ip, and 5 to 20 mg/kg, po) inhibited the 1st and 2nd phases (5 and 20 min, respectively), but the effect occurred predominantly on the 2nd phase. The effects of the lectins were totally or partially reversed by naloxone (2 mg/kg, sc) in the 1st and 2nd phases, respectively. Experiments performed with lectins in the absence and presence of avidin (1 mg/kg, ip) and D-mannose (1 mg/kg, ip) showed that avidin did not interfere with the effect of B. seaforthii lectin but partially reversed the effect of B. triquetrum lectin. D-Mannose completely reversed the effects of both species. F0/60 fractions from both algae significantly increased the latency time in response to thermal stimuli, and naloxone reversed antinociception, indicating the involvement of the opioid system in both the peripheral and central effects of the fractions. In the writhing test, the carbohydrate fractions were the most active, inhibiting the contractions by 71 and 79% (B. triquetrum) and by 46 and 69% (B. seaforthii) at doses of 1 and 5 mg/kg, ip, respectively. Sulfated carbohydrate fractions of B. seaforthii and B. triquetrum, containing only about 5% protein as contaminants, are probably responsible for the antinociceptive effects of these red algae.
Resumo:
Proteoglycans are abundant in the developing brain and there is much circumstantial evidence for their roles in directional neuronal movements such as cell body migration and axonal growth. We have developed an in vitro model of astrocyte cultures of the lateral and medial sectors of the embryonic mouse midbrain, that differ in their ability to support neuritic growth of young midbrain neurons, and we have searched for the role of interactive proteins and proteoglycans in this model. Neurite production in co-cultures reveals that, irrespective of the previous location of neurons in the midbrain, medial astrocytes exert an inhibitory or nonpermissive effect on neuritic growth that is correlated to a higher content of both heparan and chondroitin sulfates (HS and CS). Treatment of astrocytes with chondroitinase ABC revealed a growth-promoting effect of CS on lateral glia but treatment with exogenous CS-4 indicated a U-shaped dose-response curve for CS. In contrast, the growth-inhibitory action of medial astrocytes was reversed by exogenous CS-4. Treatment of astrocytes with heparitinase indicated that the growth-inhibitory action of medial astrocytes may depend heavily on HS by an as yet unknown mechanism. The results are discussed in terms of available knowledge on the binding of HS proteoglycans to interactive proteins, with emphasis on the importance of unraveling the physiological functions of glial glycoconjugates for a better understanding of neuron-glial interactions.
Resumo:
Xylofucoglucuronan from Spatoglossum schröederi algae was tested as a support for antibiotic immobilization. The polysaccharide (20 mg in 6 ml) was first activated using carbodiimide, 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide methiodide (20 mg in 2 ml), under stirring for 1 h at 25ºC and pH from 4.5 to 5.0. After adjusting the pH to 8.0, either gentamicin or amikacin (62.5 mg in 1.25 ml) was then immobilized on this chemically modified polysaccharide with shaking for 24 h in a cold room. Infrared spectra of the activated carbodiimide xylofucoglucuronan showed two bands to carbonyl (C = O at 1647.9 and 1700.7 cm-1) and to amide (CÝ-NH2) groups (1662.8 and 1714.0 cm-1). Microbial characterization of the derivatives was carried out by the disk diffusion method using Staphylococcus aureus or Klebsiella pneumoniae incorporated in Müller Hinton medium. Inhibition halos of bacterial growth were observed for the antibiotics immobilized on this sulfated heteropolysaccharide before and after dialysis. However, the halos resulting from the samples after dialysis were much smaller, suggesting that dialysis removed either non-covalently bound antibiotic or other small molecules. In contrast, bacterial growth was not inhibited by either xylofucoglucuronan or its activated form or by gentamicin or amikacin after dialysis. An additional experiment was carried out which demonstrated that the sulfated heteropolysaccharide was hydrolyzed by the microorganism. Therefore, the antibiotic immobilized on xylofucoglucuronan can be proposed as a controlled drug delivery system. Furthermore, this sulfated heteropolysaccharide can be extracted easily from sea algae Spatoglossum schröederi.
Resumo:
The brown algae Padina gymnospora contain different fucans. Powdered algae were submitted to proteolysis with the proteolytic enzyme maxataze. The first extract of the algae was constituted of polysaccharides contaminated with lipids, phenols, etc. Fractionation of the fucans with increasing concentrations of acetone produced fractions with different proportions of fucose, xylose, uronic acid, galactose, and sulfate. One of the fractions, precipitated with 50% acetone (v/v), contained an 18-kDa heterofucan (PF1), which was further purified by gel-permeation chromatography on Sephadex G-75 using 0.2 M acetic acid as eluent and characterized by agarose gel electrophoresis in 0.05 M 1,3 diaminopropane/acetate buffer at pH 9.0, methylation and nuclear magnetic resonance spectroscopy. Structural analysis indicates that this fucan has a central core consisting mainly of 3-ß-D-glucuronic acid 1-> or 4-ß-D-glucuronic acid 1 ->, substituted at C-2 with alpha-L-fucose or ß-D-xylose. Sulfate groups were only detected at C-3 of 4-alpha-L-fucose 1-> units. The anticoagulant activity of the PF1 (only 2.5-fold lesser than low molecular weight heparin) estimated by activated partial thromboplastin time was completely abolished upon desulfation by solvolysis in dimethyl sulfoxide, indicating that 3-O-sulfation at C-3 of 4-alpha-L-fucose 1-> units is responsible for the anticoagulant activity of the polymer.