954 resultados para sugarcane-ethanol-production
Resumo:
Sugarcane (Saccharum spp.) and palm tree (Elaeis guianeensis) are crops with high biofuel yields, 7.6 m(3) ha (1) y(-)1 of ethanol and 4 Mg ha(-1) y(-1) of oil, respectively. The joint production of these crops enhances the sustainability of ethanol. The objective of this work was comparing a traditional sugarcane ethanol production system (TSES) with a joint production system (JSEB), in which ethanol and biodiesel are produced at the same biorefinery but only ethanol is traded. The comparison is based on ISO 14.040:2006 and ISO 14044:2006, and appropriate indicators. Production systems in Cerrado (typical savannah), Cerradao (woody savannah) and pastureland ecosystems were considered. Energy and carbon balances, and land use change impacts were evaluated. The joint system includes 100% substitution of biodiesel for diesel, which is all consumed in different cropping stages. Data were collected by direct field observation methods, and questionnaires applied to Brazilian facilities. Three sugarcane mills situated in Sao Paulo State and one palm oil refinery located in Para State were surveyed. The information was supplemented by secondary sources. Results demonstrated that fossil fuel use and greenhouse gas emissions decreased, whereas energy efficiency increased when JSEB was compared to TSES. In comparison with TSES, the energy balance of JSEB was 1.7 greater. In addition, JSEB released 23% fewer GHG emissions than TSES. The ecosystem carbon payback time for Cerrado, Cerradao, and Degraded Grassland of JSEB was respectively 4, 7.7 and -7.6 years. These are typical land use types of the Brazilian Cerrado region for which JSEB was conceived. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The ready availability of sugarcane bagasse at an existing industrial facility and the potential availability of extra fibre through trash collection make sugarcane fibre the best candidate for early stage commercialisation of cellulosic ethanol technologies. The commercialisation of cellulosic ethanol technologies in the sugar industry requires both development of novel technologies and the assessment of these technologies at a pre-commercial scale. In 2007, the Queensland University of Technology (QUT) received funding from the Australian and Queensland Governments to construct a pilot research and development facility for the production of bioethanol and other renewable biocommodities from biomass including sugarcane bagasse. This facility has been built on the site of the Racecourse Sugar Mill in Mackay, Queensland and is known as the Mackay Renewable Biocommodities Pilot Plant (MRBPP). This research facility is capable of processing cellulosic biomass by a variety of pretreatment technologies and includes equipment for enzymatic saccharification, fermentation and distillation to produce ethanol. Lignin and fermentation co-products can also be produced in the pilot facility.
Resumo:
The Australian sugar industry processes approximately 35 million tonnes of sugarcane per year from 400 000 hectares of land. Sugar remains the principal revenue stream from sugarcane in Australia with less than 60 ML/y of fuel ethanol produced from final molasses at present. Modelling has been undertaken to estimate the potential ethanol production from the Australian sugar industry for integrated facilities producing both sugar and ethanol from the entire sugarcane resource. Although research aimed at developing commercial processes is ongoing, the use of a proportion of the bagasse and trash for ethanol production, in addition to juice and molasses fermentation, would allow significant increases in the scale of ethanol production from sugarcane in Australia, increasing total industry revenues while maintaining energy self sufficiency.
Resumo:
As oil use increases at a rate unsustainable for the environment and unmatchable by current levels of oil production, a major shift towards renewable energy is necessary. By expanding the current knowledge of lignin biosynthesis and its manipulation in sugarcane, this PhD contributes to the production of economically viable second generation bioethanol, a fuel produced from plant biomass. The findings of this thesis contribute to the limited knowledge of lignin biosynthesis and deposition in sugarcane, and the application of biotechnology to produce sugarcane, and the resulting bagasse, with a modified cell wall. Reducing or modifying the lignin content in the cell wall of bagasse can reduce production costs and increase yields of bioethanol. This makes bioethanol more economically competitive with oil as an alternative energy source. A move to using bioethanol over fossil based transport fuels will have global economic and environmental benefits.
Resumo:
In this study, for the first time the effects of glycerol on enzymatic hydrolysis and ethanol fermentation were investigated. Enzymatic hydrolysis was inhibited slightly with 2.0 wt% glycerol, leading to reduction in glucan digestibility from 84.9% without glycerol to 82.9% (72 h). With 5.0 wt% and 10.0 wt% glycerol, glucan digestibility reduced by 4.5% and11.0%, respectively. However, glycerol appeared not detrimental to cellulase enzymes. Ethanol fermentation was not affected with glycerol up to 5.0 wt%, and was inhibited slightly with 10.0 wt% glycerol, which resulted in reduction in ethanol yield from 86.0% without glycerol to 83.7% (20 h). Based on laboratory and pilot scale enzymatic hydrolysis and ethanol production results, it was estimated that 0.142 kg ethanol could be produced from 1.0 kg dry bagasse (a glucan content of 38.0%) after pretreatment with acidified glycerol solution.
Resumo:
Ethanol production from sugarcane, mainly in Brazil, on the basis of first-generation technology (22.5 billion liters, in 2007/2008 season, in 3.4 million hectares) replaces 1% of the gasoline used in the world today and is highly competitive in economic terms with ethanol produced from other crops in the USA and Europe. In this paper we discuss the potential for sugarcane ethanol expansion from two angles: (1) productivity gains which would allow greater production in the same area and (2) geographical expansion to larger areas. The potential of first-generation technology for the production of ethanol from sugarcane is far from being exhausted. There are gains in productivity of approximately a factor of two from genetically modified varieties and a geographical expansion by a factor of ten of the present level of production in many sugar-producing countries. The replacement of 10% of the gasoline used in the world by ethanol from sugarcane seems possible before second-generation technology reaches technological maturity and possibly economic competitiveness. (C) 2009 Society of Chemical Industry and John Wiley & Sons, Ltd
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results: OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform-near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions: OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level. © 2013 Chandel et al; licensee BioMed Central Ltd.
Resumo:
Xylose is the main sugar in hemicellulosic hydrolysates and its fermentation into ethanol by microorganisms is influenced by nutritional factors, such as nitrogen source, vitamins and other elements. Rice bran extract (RBE) is an inexpensive nitrogen source primarily consisting of high amount of protein. This study evaluates the potential of RBE as a nitrogen source for the hemicellulosic ethanol production from sugarcane bagasse dilute acid hydrolysate by novel yeast strains Scheffersomyces shehatae (syn. Candida shehatae) CG8-8BY and Spathaspora arborariae UFMG-HM19.1A, isolated from Brazilian forests. Two different media formulations were used for inoculum preparation and production medium, using yeast extract and RBE as nitrogen sources. S. shehatae CG8-8BY showed ethanol production of 17.0 g/l with the ethanol yield (0.33 g/g) and fermentation efficiency (64 %) from medium supplemented with RBE. On the other hand, S. arborariae presented 5.4 g/l of ethanol production with ethanol yield (0.14 g/g) and fermentation efficiency (21 %) in a fermentation medium supplemented with RBE. Appropriate media formulation is an important parameter to increase the productivity of bioconversion process and RBE proved to be an efficient and inexpensive nitrogen source to supplement sugarcane bagasse hemicellulosic hydrolysate for second generation ethanol production. © 2013 Society for Sugar Research & Promotion.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The rapid expansion of ethanol production from sugarcane in Brazil has raised a number of questions regarding its negative consequences and sustainability. Positive impacts are the elimination of lead compounds from gasoline and the reduction of noxious emissions. There is also the reduction of CO2 emissions, since sugarcane ethanol requires only a small amount of fossil fuels for its production, being thus a renewable fuel. These positive impacts are particularly noticeable in the air quality improvement of metropolitan areas but also in rural areas where mechanized harvesting of green cane is being introduced, eliminating the burning of sugarcane. Negative impacts such as future large-scale ethanol production from sugarcane might lead to the destruction or damage of high-biodiversity areas, deforestation, degradation or damaging of soils through the use of chemicals and soil decarbonization, water resources contamination or depletion, competition between food and fuel production decreasing food security and a worsening of labor conditions on the fields. These questions are discussed here, with the purpose of clarifying the sustainability aspects of ethanol production from sugarcane mainly in Sao Paulo State, where more than 60% of Brazil`s sugarcane plantations are located and are responsible for 62% of ethanol production. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Sugarcane bagasse was characterized as a feedstock for the production of ethanol using hydrothermal pretreatment. Reaction temperature and time were varied between 160 and 200A degrees C and 5-20 min, respectively, using a response surface experimental design. The liquid fraction was analyzed for soluble carbohydrates and furan aldehydes. The solid fraction was analyzed for structural carbohydrates and Klason lignin. Pretreatment conditions were evaluated based on enzymatic extraction of glucose and xylose and conversion to ethanol using a simultaneous saccharification and fermentation scheme. SSF experiments were conducted with the washed pretreated biomass. The severity of the pretreatment should be sufficient to drive enzymatic digestion and ethanol yields, however, sugars losses and especially sugar conversion into furans needs to be minimized. As expected, furfural production increased with pretreatment severity and specifically xylose release. However, provided that the severity was kept below a general severity factor of 4.0, production of furfural was below an inhibitory concentration and carbohydrate contents were preserved in the pretreated whole hydrolysate. There were significant interactions between time and temperature for all the responses except cellulose digestion. The models were highly predictive for cellulose digestibility (R (2) = 0.8861) and for ethanol production (R (2) = 0.9581), but less so for xylose extraction. Both cellulose digestion and ethanol production increased with severity, however, high levels of furfural generated under more severe pretreatment conditions favor lower severity pretreatments. The optimal pretreatment condition that gave the highest conversion yield of ethanol, while minimizing furfural production, was judged to be 190A degrees C and 17.2 min. The whole hydrolysate was also converted to ethanol using SSF. To reduce the concentration of inhibitors, the liquid fraction was conditioned prior to fermentation by removing inhibitory chemicals using the fungus Coniochaeta ligniaria.
Resumo:
Abstract Background Fuel ethanol production from sustainable and largely abundant agro-residues such as sugarcane bagasse (SB) provides long term, geopolitical and strategic benefits. Pretreatment of SB is an inevitable process for improved saccharification of cell wall carbohydrates. Recently, ammonium hydroxide-based pretreatment technologies have gained significance as an effective and economical pretreatment strategy. We hypothesized that soaking in concentrated aqueous ammonia-mediated thermochemical pretreatment (SCAA) would overcome the native recalcitrance of SB by enhancing cellulase accessibility of the embedded holocellulosic microfibrils. Results In this study, we designed an experiment considering response surface methodology (Taguchi method, L8 orthogonal array) to optimize sugar recovery from ammonia pretreated sugarcane bagasse (SB) by using the method of soaking in concentrated aqueous ammonia (SCAA-SB). Three independent variables: ammonia concentration, temperature and time, were selected at two levels with center point. The ammonia pretreated bagasse (SCAA-SB) was enzymatically hydrolysed by commercial enzymes (Celluclast 1.5 L and Novozym 188) using 15 FPU/g dry biomass and 17.5 Units of β-glucosidase/g dry biomass at 50°C, 150 rpm for 96 h. A maximum of 28.43 g/l reducing sugars corresponding to 0.57 g sugars/g pretreated bagasse was obtained from the SCAA-SB derived using a 20% v/v ammonia solution, at 70°C for 24 h after enzymatic hydrolysis. Among the tested parameters, pretreatment time showed the maximum influence (p value, 0.053282) while ammonia concentration showed the least influence (p value, 0.612552) on sugar recovery. The changes in the ultra-structure and crystallinity of native SCAA-SB and enzymatically hydrolysed SB were observed by scanning electron microscopy (SEM), x-ray diffraction (XRD) and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. The enzymatic hydrolysates and solid SCAA-SB were subjected to ethanol fermentation under separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) by Scheffersomyces (Pichia) stipitis NRRL Y-7124 respectively. Higher ethanol production (10.31 g/l and yield, 0.387 g/g) was obtained through SSF than SHF (3.83 g/l and yield, 0.289 g/g). Conclusions SCAA treatment showed marked lignin removal from SB thus improving the accessibility of cellulases towards holocellulose substrate as evidenced by efficient sugar release. The ultrastructure of SB after SCAA and enzymatic hydrolysis of holocellulose provided insights of the degradation process at the molecular level.
Resumo:
Background Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform–near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases’ ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level.