945 resultados para sugar juice
Resumo:
The determination of the total calcium in juice, syrups, and other products of the sugar industry is investigated. Total calcium and free calcium is determinated by AAS and employing Ca-selective electrode respectively. A coefficient is obtained for the relation of total calcium with respect to free calcium. The coefficient is employed to determine the content of total calcium in accordance with the following equation.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Abstract: Alcoholic beverages are produced following the fermentation of sugars by yeasts, mainly (but not exclusively) strains of the species, Saccharomyces cerevisiae. The sugary starting materials may emanate from cereal starches (which require enzymatic pre‐hydrolysis) in the case of beers and whiskies, sucrose‐rich plants (molasses or sugar juice from sugarcane) in the case of rums, or from fruits (which do not require pre‐hydrolysis) in the case of wines and brandies. In the presence of sugars, together with other essential nutrients such as amino acids, minerals and vitamins, S. cerevisiae will conduct fermentative metabolism to ethanol and carbon dioxide (as the primary fermentation metabolites) as the cells strive to make energy and regenerate the coenzyme NAD+ under anaerobic conditions. Yeasts will also produce numerous secondary metabolites which act as important beverage flavour congeners, including higher alcohols, esters, carbonyls and sulphur compounds. These are very important in dictating the final flavour and aroma characteristics of beverages such as beer and wine, but also in distilled beverages such as whisky, rum and brandy. Therefore, yeasts are of vital importance in providing the alcohol content and the sensory profiles of beverages. This Introductory Chapter reviews, in general, the growth, physiology and metabolism of S. cerevisiae in alcoholic beverage fermentations.
Resumo:
Chagas disease can be transmitted to man by many different means, including contact with infected triatomine feces, blood transfusion, laboratory accidents, organ transplants, and congenital or oral routes. The latter mode has received considerable attention recently. In this assay, we evaluate the survival of Trypanosoma cruzi contaminating sugar cane used to prepare juice, as well as the viability and capacity for infection by the parasite after recovery. Thirty triatomines were contaminated with T. cruzi Y strain and 45 days later pieces of sugar cane were contaminated with the intestinal contents of the insects. The pieces were ground at different intervals after contamination (time = 0, 1, 4, 6, 12 and 24 hours) and the juice extracted and analyzed. Different methods were used to show T. cruzi in the juice: direct analysis, hematocrit tube centrifugation and QBC, and experimental inoculation in 47 female BALB/c mice (five control mice and seven mice for each interval examined (five inoculated orally and two intraperitoneally). Positive results were found using the direct analysis and QBC methods for juice prepared up to 12 hours after initial contamination. However, by the centrifugation technique, positivity was found only up to four hours after contamination of the sugar cane. Inoculated animals showed parasitemia during a 14 day observation period, demonstrating the high survival rate of T. cruzi in sugar cane.
Resumo:
Sugar cane juice or garapa darkens quickly after extraction due to the oxidation of some of its constituents harming its commercialization thus requiring rapid consumption. The objective of this study was to develop a mild process for sugar cane clarification, obtaining a cloudy, greenish-yellow beverage. The following parameters were combined to aiming at this objective: heat treatment at 65 ºC/50 minutes; pH change (to 7.0, 7.5, and 8.0); addition of flocculant (0, 30, and 60 ppm Aluminum polychloride or APC - "Panclar P-1010"), and clarifier aid (0, 2, or 4 ppm of positively charged polyelectrolyte - "Magnafloc LT-27"). The decantation time was 45 minutes and the supernatant liquid was removed with a vacuum pump. The treatments were defined using the Response Surface Methodology and were submitted to physicochemical analysis for turbidity (%), total polysaccharide content (µg.mL-1), dextran content (µg.mL-1), and sensory analysis (acceptance test) for the attributes of color, appearance, and turbidity. It was concluded that the addition of 60 ppm APC, pH 8, and 0 ppm polyelectrolyte represented the best treatment to obtain a low polysaccharide content, 90% turbidity, and high scores for color, appearance, and turbidity. The beverage was sensorially well accepted by consumers.
Resumo:
The artisanal production of cachaça, a beverage obtained by the fermentation of sugar cane juice after distillation, especially by small-sized producers, has traditionally used natural ferment ("fermento caipira") which consists of sugar cane juice with crushed corn, powdered rice, or citrus fruits. In despite of the difficulties in quality control due to the high level of contaminants and longer periods of preparation, the sensorial quality of the beverage may be attributed to the physiological activities of wild yeasts and even bacteria present during fermentation when this ferment is used. In this context, the aim here was to evaluate the microbiological (yeasts) and physicochemical characteristics of sugar cane juice extracted from different parts of three different varieties (RB72454, RB835486, and RB867515) of the cane stalk (lower, medium, and upper sections) in three harvesting periods (from May to December 2007) in an area under organic management. The juice from the upper section (from the eleventh internode to the top) of the sugar cane stalk could be indicated for the preparation of the natural ferment since it is as a source of yeasts and reducing sugars, especially the variety RB867515. Due to the seasonality, the best period for using this part of the sugar cane stalk is at the beginning of harvesting when the phenolic compounds are at low concentration, but there are higher number of Saccharomyces population and other yeast species. The high acidity in this section of the plant could result in a better control of bacterial contamination. These findings explain the traditional instructions of adding the upper sections for the preparation of natural ferment and can help its management in order to get a better performance with respect to organic cachaça production.
Resumo:
The objective of this study was to evaluate the effect of Moringa oleifera Lam. leaf extract on the sedimentation of impurities in the treatment of sugarcane juice and the effects on sugar quality and on the clarified juice. The experimental design used was a 4x2 factorial arrangement with four replications. The main treatments performed included the extracted original sugarcane juice, the synthetic polyelectrolyte (Flomex 9076), the leaf extract, and a control. The secondary treatments consisted of the sugarcane varieties RB92579 and RB867515. The clarification process used was simple defecation, in which the flocculating agents and the juice, limed and heated, were poured simultaneously into a decanter. The microbiological and chemico-technological characteristics of the extracted and clarified juices were evaluated. The clarified juice was concentrated up to 60° Brix (syrup) and subjected to boiling in a pilot pan using seeds to perform the graining: The sugar was recovered by centrifugation and analyzed for microbiological and chemico-technological characteristics. It was concluded that the use of the Moringa oleifera Lam. leaves extract resulted in a better quality of clarified juice and sugar.
Resumo:
The objective of this study was to evaluate the effect of Moringa oleifera Lam. leaf extract on the sedimentation of impurities in the treatment of sugarcane juice and the effects on sugar quality and on the clarified juice. The experimental design used was a 4x2 factorial arrangement with four replications. The main treatments performed included the extracted original sugarcane juice, the synthetic polyelectrolyte (Flomex 9076), the leaf extract, and a control. The secondary treatments consisted of the sugarcane varieties RB92579 and RB867515. The clarification process used was simple defecation, in which the flocculating agents and the juice, limed and heated, were poured simultaneously into a decanter. The microbiological and chemico-technological characteristics of the extracted and clarified juices were evaluated. The clarified juice was concentrated up to 60° Brix (syrup) and subjected to boiling in a pilot pan using seeds to perform the graining: The sugar was recovered by centrifugation and analyzed for microbiological and chemico-technological characteristics. It was concluded that the use of the Moringa oleifera Lam. leaves extract resulted in a better quality of clarified juice and sugar.
Resumo:
Laminar and pulsed flows typical of multi-commuted and multi-pumping flow systems, were evaluated in relation to analytical procedures carried out at high temperatures. As application, the spectrophotometric determination of total reducing sugars (TRS, hydrolyzed sucrose plus reducing sugars) in sugar-cane juice and molasses was selected. The method involves in-line hydrolysis of sucrose and alkaline degradation of the reducing sugars at about 98 degrees C. Better results were obtained with pulsed flows, due to the efficient radial mass transport inherent to the multi-pumping flow system. The proposed system presents favorable characteristics of ruggedness, analytical precision (r.s.d. < 0.013 for typical samples), stability (no measurable baseline drift during 4-h working periods), linearity of the analytical curve (r > 0.992, n = 5, 0.05-0.50% w/v TRS) and sampling rate (65 h(-1)). Results are in agreement with ion chromatography.
Resumo:
Sixteen different strains of Saccharomyces cerevisiae and Saccharomyces bayanus were evaluated in the production of raspberry fruit wine. Raspberry juice sugar concentrations were adjusted to 16 degrees Brix with a sucrose solution, and batch fermentations were performed at 22 degrees C. Various kinetic parameters, such as the conversion factors of the substrates into ethanol (Y(p/s)), biomass (Y(x/s)), glycerol (Y(g/s)) and acetic acid (Y(ac/s)), the volumetric productivity of ethanol (Q(p)), the biomass productivity (P(x)), and the fermentation efficiency (E(f)) were calculated. Volatile compounds (alcohols, ethyl esters, acetates of higher alcohols and volatile fatty acids) were determined by gas chromatography (GC-FID). The highest values for the E(f), Y(p/s), Y(g/s), and Y(x/s) parameters were obtained when strains commonly used in the fuel ethanol industry (S. cerevisiae PE-2, BG, SA, CAT-1, and VR-1) were used to ferment raspberry juice. S. cerevisiae strain UFLA FW 15, isolated from fruit, displayed similar results. Twenty-one volatile compounds were identified in raspberry wines. The highest concentrations of total volatile compounds were found in wines produced with S. cerevisiae strains UFLA FW 15 (87,435 mu g/L), CAT-1 (80,317.01 mu g/L), VR-1 (67,573.99 mu g/L) and S. bayanus CBS 1505 (71,660.32 mu g/L). The highest concentrations of ethyl esters were 454.33 mu g/L, 440.33 mu g/L and 438 mu g/L for S. cerevisiae strains UFLA FW 15, VR-1 and BG, respectively. Similar to concentrations of ethyl esters, the highest concentrations of acetates (1927.67 mu g/L) and higher alcohols (83,996.33 mu g/L) were produced in raspberry wine from S. cerevisiae UFLA FW 15. The maximum concentration of volatile fatty acids was found in raspberry wine produced by S. cerevisiae strain VR-1. We conclude that S. cerevisiae strain UFLA FW 15 fermented raspberry juice and produced a fruit wine with low concentrations of acids and high concentrations of acetates, higher alcohols and ethyl esters. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
A semi-empirical linear equation has been developed to optimise the amount of maltodextrin additive (DE 6) required to successfully spray dry a sugar-rich product on the basis of its composition. Based on spray drying experiments, drying index values for individual sugars (sucrose, glucose, frutose) and citric acid were determined, and us;ng these index values an equation for model mixtures of these components was established. This equation has been tested with two sugar-rich natural products, pineapple juice and honey. The relationship was found to be valid for these products.
Resumo:
Cashew (Anacardium occidentale L.) apples from Pacajus, Ceará State, Brazil, were processed into high pulp content juice. The juice was packed either by hot fill or an aseptic process and evaluated for physical, physical-chemical, and sensorial changes during a 12-month storage period at room temperature. The results indicated that pH, soluble solids, total acidity, total sugar content and color did not change significantly during storage nor were affected by the type of filling. The sensorial analysis showed that juice acceptance remained high throughout the storage period regardless of the filling system. Differences in juice viscosity persisted between both processes.
Resumo:
"Panela" is a natural sweetener obtained by concentrating sugar cane juice and handmade in small factories. In the study carried out, the physical and chemical properties of two commercial brands of artisanal granulated panelas and of one made on an experimental level were determined. Three lots of each sample were analyzed. The parameters measured were moisture, a w, protein, ash, minerals, reducing sugars, sucrose, pH, color (L, a and b), insoluble solids (IS), transmittance a 720 nm and filterability. In addition, a qualitative test to detect sulphur dioxide was performed. The parameters with higher variability were moisture (1.66-4.36 g.100 g-1), a w (0.51-0.69), reducing sugars (4.58-11.48 g.100 g-1), pH (5.58-6.90), and color. Potassium was the most abundant mineral (229.52-1027.18 mg.100 g-1). An inverse relationship between IS and transmittance at 720 nm (R² = 0.96) and a direct relationship between IS and ash (R² = 0.94) were found. The sulphur dioxide test was negative for all the samples.
Resumo:
The objectives of this study were to develop the method of isotope analysis to quantify the carbon of C3 photosynthetic cycle in pulpy whole apple juice and to measure the legal limits based on Brazilian legislation in order to identify the beverages that do not conform to the Ministry of Agriculture, Livestock and Food Supply (MAPA). This beverage was produced in a laboratory according to the Brazilian law. Pulpy juices adulterated by the addition of sugarcane were also produced. The isotope analyses measured the relative isotope enrichment of the juices, their pulpy fractions (internal standard) and purified sugar. From those results, the quantity of C3 source was estimated by means of the isotope dilution equation. To determine the existence of adulteration in commercial juices, it was necessary to create a legal limit according to the Brazilian law. Three brands of commercial juices were analyzed. One was classified as adulterated. The legal limit enabled to clearly identify the juice that was not in conformity with the Brazilian law. The methodology developed proved efficient for quantifying the carbon of C3 origin in commercial pulpy apple juices.