992 resultados para sucrose como agente retardador
Resumo:
O principal objectivo desta investigação foi o desenvolvimento cimentos de fosfatos de cálcio com injetabilidade melhorada e propriedades mecânicas adequadas para aplicação em vertebroplastia. Os pós de fosfato de tricálcico (TCP) não dopados e dopados (Mg, Sr e Mn) usados neste estudo foram obtidos pelo processo de precipitação em meio aquoso, seguidos de tratamento térmico de forma a obter as fases pretendidas, α− e β−TCP. A substituição parcial de iões Ca por iões dopantes mostrou ter implicações em termos de estabilidade térmica da fase β−TCP. Os resultados demonstraram que as transformações de fase alotrópicas β↔α−TCP são fortemente influenciadas por variáveis experimentais como a taxa de arrefecimento, a presença de impurezas de pirofosfato de cálcio e a extensão do grau de dopagem com Mg. Os cimentos foram preparados através da mistura de pós, β−TCP (não dopados e dopados) e fosfato monocálcico monidratado (MCPM), com meios líquidos diferentes usando ácido cítrico e açucares (sucrose e frutose) como agentes retardadores de presa, e o polietilenoglicol, a hidroxipropilmetilcelulose e a polivinilpirrolidona como agentes gelificantes. Estes aditivos, principalmente o ácido cítrico, e o MCPM aumentam significativamente a força iónica do meio, influenciando a injetabilidade das pastas. Os resultados também mostraram que a distribuição de tamanho de partícula dos pós é um factor determinante na injetabilidade das pastas cimentícias. A combinação da co-dopagem de Mn e Sr com a adição de sucrose no líquido de presa e com uma distribuição de tamanho de partícula dos pós adequada resultou em cimentos de brushite com propriedades bastante melhoradas em termos de manuseamento, microestrutura, comportamento mecânico e biológico: (i) o tempo inicial de presa passou de ~3 min to ~9 min; (ii) as pastas cimentícias foram totalmente injectadas para uma razão liquido/pó de 0.28 mL g−1 com ausência do efeito de “filter-pressing” (separação de fases líquida e sólida); (iii) após imersão numa solução durante 48 h, as amostras de cimento molhadas apresentam uma porosidade total de ~32% e uma resistência a compressão de ~17 MPa, valor muito superior ao obtido para os cimentos sem açúcar não dopados (5 MPa) ou dopados só com Sr (10 MPa); e (iv) o desempenho biológico, incluindo a adesão e crescimento de células osteoblásticas na superfície do cimento, foi muito melhorado. Este conjunto de propriedades torna os cimentos excelentes para regeneração óssea e engenharia de tecidos, e muito promissores para aplicação em vertebroplastia.
Resumo:
Chemical admixtures, when properly selected and quantified, play an important role in obtaining adequate slurry systems for quality primary cementing operations. They assure the proper operation of a well and reduce costs attributed to corrective cementing jobs. Controlling the amount lost by filtering through the slurry to permeable areas is one of the most important requirements in an operation, commonly controlled by chemical admixtures, such as carboxymethylcellulose (CMC). However, problems related to temperature, salttolerance and the secundary retarding effect are commonly reported in the literature. According to the scenario described above, the use of an aqueous dispersion of non-ionic poliurethane was proposed to control the filter loss, given its low ionic interaction with the free ions present in the slurries in humid state. Therefore, this study aims at assessing the efficiency of poliurethane to reduce filter loss in different temperature and pressure conditions as well as the synergistic effect with other admixtures. The temperatures and pressures used in laboratory tests simulate the same conditions of oil wells with depths of 500 to 1200 m. The poliurethane showed resistance to thermal degradation and stability in the presence of salts. With the increase in the concentration of the polymer there was a considerable decrease in the volume lost by filtration, and this has been effective even with the increase in temperature
Resumo:
Chemical admixtures, when properly selected and quantified, play an important role in obtaining adequate slurry systems for quality primary cementing operations. They assure the proper operation of a well and reduce costs attributed to corrective cementing jobs. Controlling the amount lost by filtering through the slurry to permeable areas is one of the most important requirements in an operation, commonly controlled by chemical admixtures, such as carboxymethylcellulose (CMC). However, problems related to temperature, salttolerance and the secundary retarding effect are commonly reported in the literature. According to the scenario described above, the use of an aqueous dispersion of non-ionic poliurethane was proposed to control the filter loss, given its low ionic interaction with the free ions present in the slurries in humid state. Therefore, this study aims at assessing the efficiency of poliurethane to reduce filter loss in different temperature and pressure conditions as well as the synergistic effect with other admixtures. The temperatures and pressures used in laboratory tests simulate the same conditions of oil wells with depths of 500 to 1200 m. The poliurethane showed resistance to thermal degradation and stability in the presence of salts. With the increase in the concentration of the polymer there was a considerable decrease in the volume lost by filtration, and this has been effective even with the increase in temperature
Resumo:
Osmotic dehydration is becoming more popular as a complementary treatment in the processing of dehydrated foods, since it presents some advantages such as minimising heat damage to the colour and flavour, inhibiting enzymatic browning and thus dispensing the addition of sulphite and, mainly, reducing energy costs. The objective of the present study was to evaluate the effect of using inverted sugar and sucrose syrups as osmotic agents in the dehydration of mango. The conditions used in the dehydration process were: syrup/fruit ratio of 3:1 (v/w); temperature of 45ºC and constant stirring. The in natura and osmo-dehydrated fruits were evaluated in relation to pH, moisture content, water activity (a w) and soluble solids (ºBrix). Solids incorporation and loss in mass after the dehydration process were also determined. The sensory acceptance of the in natura and osmo-dehydrated fruits was determined for the attributes of aroma, flavour, texture and overall acceptance using a hedonic scale. Osmotic dehydration resulted in a reduction in moisture content and water activity, an increase in Brix and maintenance of the pH. The treatment with inverted sugar syrup resulted in more significant alterations in moisture content, a w, Brix, solids incorporation and loss in mass than the treatment with sucrose syrup. Mangos osmo-dehydrated with inverted sugar (55.3% inversion rate) syrup obtained acceptance similar to in natura mangos, this treatment being considered the most adequate for dehydration purposes.
Resumo:
A visita domiciliária constitui o principal instrumento de trabalho dos agentes comunitários na Estratégia Saúde da Família. O objetivo deste estudo foi descrever a percepção de adultos e idosos em relação à visita domiciliária realizada pelo agente comunitário de saúde. Como referencial metodológico foi utilizada a abordagem qualitativa embasada em algumas figuras metodológicas do Discurso do Sujeito Coletivo. Os dados foram coletados em maio de 2007, em uma Unidade de Saúde da Família de Botucatu-SP, por meio de formulário sociodemografico e entrevista semiestruturada aplicada a 14 usuários. A análise dos dados permitiu identificar dois temas: "Sentimentos e percepções em relação à visita e ao agente comunitário" e "O reconhecimento das ações do agente comunitário". Apesar de os entrevistados sentirem-se satisfeitos e gratos diante da visita, o fato de perceberem a frequência mensal como insuficiente e de alegarem desconhecer o conteúdo das anotações realizadas pelo agente no momento da visita sinalizam a necessidade de o enfermeiro investir de maneira mais intensa em atividades educativas junto a esses profissionais, priorizando questões que envolvem os processos de comunicação. Acredita-se que com essa medida será possível otimizar, qualitativamente, a realização da atividade.
Resumo:
Background -: Sucrose content is a highly desirable trait in sugarcane as the worldwide demand for cost-effective biofuels surges. Sugarcane cultivars differ in their capacity to accumulate sucrose and breeding programs routinely perform crosses to identify genotypes able to produce more sucrose. Sucrose content in the mature internodes reach around 20% of the culms dry weight. Genotypes in the populations reflect their genetic program and may display contrasting growth, development, and physiology, all of which affect carbohydrate metabolism. Few studies have profiled gene expression related to sugarcane's sugar content. The identification of signal transduction components and transcription factors that might regulate sugar accumulation is highly desirable if we are to improve this characteristic of sugarcane plants. Results -: We have evaluated thirty genotypes that have different Brix (sugar) levels and identified genes differentially expressed in internodes using cDNA microarrays. These genes were compared to existing gene expression data for sugarcane plants subjected to diverse stress and hormone treatments. The comparisons revealed a strong overlap between the drought and sucrose-content datasets and a limited overlap with ABA signaling. Genes associated with sucrose content were extensively validated by qRT-PCR, which highlighted several protein kinases and transcription factors that are likely to be regulators of sucrose accumulation. The data also indicate that aquaporins, as well as lignin biosynthesis and cell wall metabolism genes, are strongly related to sucrose accumulation. Moreover, sucrose-associated genes were shown to be directly responsive to short term sucrose stimuli, confirming their role in sugar-related pathways. Conclusion -: Gene expression analysis of sugarcane populations contrasting for sucrose content indicated a possible overlap with drought and cell wall metabolism processes and suggested signaling and transcriptional regulators to be used as molecular markers in breeding programs. Transgenic research is necessary to further clarify the role of the genes and define targets useful for sugarcane improvement programs based on transgenic plants.
Resumo:
Sucrose was used to prepare montmorillonite/carbon nanocomposites by calcination in a reduced atmosphere. The aim was to investigate the changes derived from varying the clay and sucrose content in the resulting material and to change the adsorption properties to evaluate its potential to be used in catalytic applications. X-ray diffraction patterns revealed the formation of an intercalated nanostructure composed of carbon-filled clay mineral layers, which was confirmed by the Fourier transform infrared spectra and thermogravimetry curves. Differences in composition and texture surface were detected by scanning electron microscopy images and were supported by viscosity measurements. These measurements were helpful in understanding why the sample prepared with the highest sucrose content presented the lowest gasoline and methylene blue adsorption results and why the highest adsorption properties were attributed to the sample with the highest clay content. Moreover, BET and BJH studies allowed understanding oleic acid catalytic conversion. Finally, a water flux simulation test was performed to determine the mechanical resistance in comparison to an activated carbon. It was found that the nanocomposites were more resistant, supporting their use in catalytic applications for a longer period of time. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Saccharomyces cerevisiae hexokinase-less strains were produced to study the production of ethanol and fructose from sucrose. These strains do not have the hexokinases A and B. Twenty-three double-mutant strains were produced, and then, three were selected for presenting a smaller growth in yeast extract-peptone-fructose. In fermentations with a medium containing sucrose (180.3 g L-1) and with cell recycles, simulating industrial conditions, the capacity of these mutant yeasts in inverting sucrose and fermenting only glucose was well characterized. Besides that, we could also see their great tolerance to the stresses of fermentative recycles, where fructose production (until 90 g L-1) and ethanol production (until 42.3 g L-1) occurred in cycles of 12 h, in which hexokinase-less yeasts performed high growth (51.2% of wet biomass) and viability rates (77% of viable cells) after nine consecutive cycles.
Resumo:
Expressed sequence tags derived markers have a great potential to be used in functional map construction and QTL tagging. In the present work, sugarcane genomic probes and expressed sequence tags having homology to genes, mostly involved in carbohydrate metabolism were used in RFLP assays to identify putative QTLs as well as their epistatic interactions for fiber content, cane yield, pol and tones of sugar per hectare, at two crop cycles in a progeny derived from a bi-parental cross of sugarcane elite materials. A hundred and twenty marker trait associations were found, of which 26 at both crop cycle and 32 only at first ratoon cane. A sucrose synthase derived marker was associated with a putative QTL having a high negative effect on cane yield and also with a QTL having a positive effect on Pol at both crop cycles. Fifty digenic epistatic marker interactions were identified for the four traits evaluated. Of these, only two were observed at both crop cycles.
Resumo:
Target region amplification polymorphism (TRAP) markers were used to estimate the genetic similarity (GS) among 53 sugarcane varieties and five species of the Saccharum complex. Seven fixed primers designed from candidate genes involved in sucrose metabolism and three from those involved in drought response metabolism were used in combination with three arbitrary primers. The clustering of the genotypes for sucrose metabolism and drought response were similar, but the GS based on Jaccard`s coefficient changed. The GS based on polymorphism in sucrose genes estimated in a set of 46 Brazilian varieties, all of which belong to the three Brazilian breeding programs, ranged from 0.52 to 0.9, and that based on drought data ranged from 0.44 to 0.95. The results suggest that genetic variability in the evaluated genes was lower in the sucrose metabolism genes than in the drought response metabolism ones.
Resumo:
Honey was co-crystallized with a sucrose syrup at 128 degrees C using a sucrose:honey proportion of 90:10, 85:15 and 80:20. The first two proportions produced granular co-crystals, whereas the ratio of 80:20 produced a semi-solid product. The granules were relatively free flowing with an angle of repose 38.5-39.5 degrees. Gas chromatography was used to compare die differences in four flavour compounds: 2.3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, HMF, 6-methyheptyl prop-2-enoate and 3-hydroxy-4-phenylbutan-2-one. Gas chromatographic results indicated some minor differences in the quantity of flavour volatiles in honey relative to the co-crystallized product. (C) 1998 Academic Press Limited.
Resumo:
Four Saccharomyces cerevisiae Brazilian industrial ethanol production strains were grown, under shaken and static conditions, in media containing 22% (w/v) sucrose supplemented with nitrogen sources varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Sucrose fermentations by Brazilian industrial ethanol production yeasts strains were strongly affected by both the structural complexity of the nitrogen source and the availability of oxygen. Data suggest that yeast strains vary in their response to the nitrogen source`s complex structure and to oxygen availability. In addition, the amount of trehalose produced could be correlated with the fermentation performance of the different yeasts, suggesting that efficient fuel ethanol production depends on finding conditions which are appropriate for a particular strain, considering demand and dependence on available nitrogen sources in the fermentation medium.
Resumo:
Sucrose-fed rats, a model of metabolic syndrome, are characterized by insulin resistance, obesity, hypertension, and high plasma levels of triacylglycerols and angiotensin II (Ang II). However, whether tissue renin-angiotensin system (RAS) is altered in metabolic syndrome is unclear. To study this issue, food ad libitum and water (C) or 20% sucrose solution (SC) were given to adult male Wistar rats, for 30 days. Body weight (BW), blood pressure (BP), epididymal adipose tissue (EPI) mass, rate of in vivo fatty acid (FA) synthesis in EPI, circulating glucose, insulin, leptin, angiotensins I and II, triacylglycerols, and plasma renin (PRA) and angiotensin-converting enzyme (ACE) activities were evaluated. In kidneys and EPI, gene and protein expression of type 1 (AT(1)) and 2 (AT(2)) Ang II receptors, ACE, angiotensinogen (ACT) as well as protein expression of angiotensin-converting enzyme 2 (ACE2) were determined. In both tissues, Ang I, Ang II and Ang-(1-7) contents were also measured by HPLC. In SC rats higher BP, EPI mass, circulating triacylglycerols, insulin, leptin, PRA and, Ang II were found. In EPI, the rate of in vivo FA synthesis was associated with increased Ang-(1-7), protein expression of AT(1) and AT(2) receptors, ACE2, ACT, and gene expression of ACT although a reduction in ACE activity and in adipose Ang I and Ang II contents was observed. In kidneys, AT(1) and AT(2), ACE and ACT gene and protein expression as well as protein expression of ACE2 were unaltered while Ang II, Ang-(1-7) and ACE activity increased. These RAS component changes seem to be tissue specific and possibly are related to enhancement of FA synthesis, EPI mass and hypertension. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Storage at low temperature is the most frequently used method to extend the shelf life of banana fruit, and is fundamental for extended storage and transport over long distances. However, storage and transport conditions must be carefully controlled because of the high susceptibility of many commercial cultivars to chilling injury. The physiological behavior of bananas at low temperatures has been studied to identify possible mechanisms of resistance to chilling injury. The aim of this work was to evaluate differences in the starch-to-sucrose metabolism of a less tolerant and susceptible (Musa acuminata, AAA cv. Nanicao) and a more tolerant (M. acuminata x Musa balbusiana, AAB, cv. Prata) banana cultivar to chilling injury. Fruits of these cultivars were stored in chambers at 13 degrees C for 15 d, at which point they were transferred to 19 degrees C, where they were left until complete ripening. The low temperature induced significant changes in the metabolism of starch and sucrose in comparison to fruit ripened only at 19 degrees C. The sucrose accumulation was slightly higher in cv. Prata, and different patterns of starch degradation, sucrose synthesis, activity and protein levels of the alpha-and beta-amylases, starch phosphorylase, sucrose synthase and sucrose phosphate synthase were detected between the cultivars. Our results suggest that starch-to-sucrose metabolism is likely part of the mechanism for cold acclimation in banana fruit, and the cultivar-dependent differences contribute to their ability to tolerate cold temperatures. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Levels of sucrose and total fructool igosaccha rides (FOS) were quantified in different phases of banana `Prata` ripening during storage at ambient (similar to 19 degrees C) and low (similar to 10 degrees C) temperature. Total FOS levels were detected in the first days after harvest, whereas 1-kestose remained undetectable until the sucrose levels reached approximately 200 mg/g (dry weight) in both groups. Sucrose levels increased slowly but constantly at low temperature, but they elevated rapidly when the temperature was raised to 19 degrees C. Total FOS and sucrose levels were higher in bananas stored at low temperature than in the control group. In both samples, total FOS levels were higher than those of 1-kestose. The carbohydrate profiles obtained by HPLC and TLC suggest the presence of neokestose, 6-kestose, and bifurcose. The enzymes putatively involved in banana fructosyltransferase activity were also evaluated. Results obtained indicate that the banana enzyme responsible for the synthesis of FOS by transfructosylation is an invertase rather than a sucrose-sucrosyl transferase-like enzyme.