996 resultados para substitution rate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neutral rate of allelic substitution is analyzed for a class-structured population subject to a stationary stochastic demographic process. The substitution rate is shown to be generally equal to the effective mutation rate, and under overlapping generations it can be expressed as the effective mutation rate in newborns when measured in units of average generation time. With uniform mutation rate across classes the substitution rate reduces to the mutation rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Is species diversification driven by neutral- or niche-based processes? Butterflies of the Lycaenidae family have developed mutualistic interactions with ants. This biotic requirement increased the spatial fragmentation of populations of lower effective population size (Ne) compared with autonomous species. The nearly neutral theory predicts that species with smaller Ne should fix more mutations because of the increased strength of drift. Taking into account the phylogenetic relatedness among species, this study shows that species with a stronger dependence on ants displayed more intra-specific Single Nucleotide Polymorphisms compared with species with low or no myrmecophily. This phenomenon can cause more pronounced genetic differentiation between populations and could ultimately promote speciation in a similar manner as on physical islands. The large species diversity observed in this family could be the consequence of this neutral process enhancing the diversification of lineages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the end of 2005, the State Council of China passed ”The Decision on adjusting the Individual Account of Basic Pension System”, which adjusted the individual account in the 1997 basic pension system. In this essay, we will analyze the adjustment above, and use Life Annuity Actuarial Theory to establish the basic pension substitution rate model. Monte Carlo simulation is also used to prove the rationality of the model. Some suggestions are put forward associated with the substitution rate according to the current policy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of studies have noted that nucleotide substitution rates at the chloroplast-encoded rbcL locus violate the molecular clock principle. Substitution rate variation at this plastid gene is particularly pronounced between palms and grasses; for example, a previous study estimated that substitution rates in rbcL sequences are approximately 5-fold faster in grasses than in palms. To determine whether a proportionate change in substitution rates also occurs in plant nuclear genes, we characterized nucleotide substitution rates in palm and grass sequences for the nuclear gene Adh. In this article, we report that palm sequences evolve at a rate of 2.61 x 10(-9) substitution per synonymous site per year, a rate which is slower than most plant nuclear genes. Grass Adh sequences evolve approximately 2.5-fold faster than palms at synonymous sites. Thus, synonymous rates in nuclear Adh genes show a marked decrease in palms relative to grasses, paralleling the pattern found at the plastid rbcL locus. This shared pattern indicates that synonymous rates are correlated between a nuclear and a plastid gene. Remarkably, nonsynonymous rates do not show this correlation. Nonsynonymous rates vary between two duplicated grass Adh loci, and nonsynonymous rates at the palm Adh locus are not markedly reduced relative to grasses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chlorarachniophytes are amoeboid algae with chlorophyll a and b containing plastids that are surrounded by four membranes instead of two as in plants and green algae. These extra membranes form important support for the hypothesis that chlorarachniophytes have acquired their plastids by the ingestion of another eukaryotic plastid-containing alga. Chlorarachniophytes also contain a small nucleus-like structure called the nucleomorph situated between the two inner and the two outer membranes surrounding the plastid. This nucleomorph is a remnant of the endosymbiont's nucleus and encodes, among other molecules, small subunit ribosomal RNA. Previous phylogenetic analyses on the basis of this molecule provided unexpected and contradictory evidence for the origin of the chlorarachniophyte endosymbiont. We developed a new method for measuring the substitution rates of the individual nucleotides of small subunit ribosomal RNA. From the resulting substitution rate distribution, we derived an equation that gives a more realistic relationship between sequence dissimilarity and evolutionary distance than equations previously available. Phylogenetic trees constructed on the basis of evolutionary distances computed by this new method clearly situate the chlorarachniophyte nucleomorphs among the green algae. Moreover, this relationship is confirmed by transversion analysis of the Chlorarachnion plastid small subunit ribosomal RNA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Life history has been implicated as a determinant of variation in rate of molecular evolution amongst vertebrate species because of a negative correlation between bode size and substitution rate for many Molecular data sets. Both the generality and the cause of the negative bode size trend have been debated, and the validity of key studies has been questioned (particularly concerning the failure to account for phylogenetic bias). In this study, a comparative method has been used to test for an association between a range of life-history variables-such as body size age at maturity, and clutch size-and DNA substitution rate for three genes (NADH4, cytochrome b, and c-mos). A negative relationship between body size and rate of molecular evolution was found for phylogenetically independent pairs of reptile species spanning turtles. lizards. snakes, crocodile, and tuatara. Although this Study was limited by the number of comparisons for which both sequence and lite-history data were available, the results, suggest that a negative bode size trend in rate of molecular evloution may be a general feature of reptile molecular evolution. consistent with similar studies of mammals and birds. This observation has important implications for uncovering the mechanisms of molecular evolution and warns against assuming that related lineages will share the same substitution rate (a local molecular clock) in order to date evolutionary divergences from DNA sequences.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Since generic drugs have the same therapeutic effect as the original formulation but at generally lower costs, their use should be more heavily promoted. However, a considerable number of barriers to their wider use have been observed in many countries. The present study examines the influence of patients, physicians and certain characteristics of the generics' market on generic substitution in Switzerland.Methods: We used reimbursement claims' data submitted to a large health insurer by insured individuals living in one of Switzerland's three linguistic regions during 2003. All dispensed drugs studied here were substitutable. The outcome (use of a generic or not) was modelled by logistic regression, adjusted for patients' characteristics (gender, age, treatment complexity, substitution groups) and with several variables describing reimbursement incentives (deductible, co-payments) and the generics' market (prices, packaging, co-branded original, number of available generics, etc.).Results: The overall generics' substitution rate for 173,212 dispensed prescriptions was 31%, though this varied considerably across cantons. Poor health status (older patients, complex treatments) was associated with lower generic use. Higher rates were associated with higher out-of-pocket costs, greater price differences between the original and the generic, and with the number of generics on the market, while reformulation and repackaging were associated with lower rates. The substitution rate was 13% lower among hospital physicians. The adoption of the prescribing practices of the canton with the highest substitution rate would increase substitution in other cantons to as much as 26%.Conclusions: Patient health status explained a part of the reluctance to substitute an original formulation by a generic. Economic incentives were efficient, but with a moderate global effect. The huge interregional differences indicated that prescribing behaviours and beliefs are probably the main determinant of generic substitution.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is widely accepted that the rate of evolution (substitution rate) at neutral genes is unaffected by population size fluctuations. This result has implications for the analysis of genetic data in population genetics and phylogenetics, and provides, in particular, a justification for the concept of the molecular clock. Here, we show that the substitution rate at neutral genes does depend on population size fluctuations in the presence of overlapping generations. As both population size fluctuations and overlapping generations are expected to be the norm rather than the exception in natural populations, this observation may be relevant for understanding variation in substitution rates within and between lineages.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Positive selection is widely estimated from protein coding sequence alignments by the nonsynonymous-to-synonymous ratio omega. Increasingly elaborate codon models are used in a likelihood framework for this estimation. Although there is widespread concern about the robustness of the estimation of the omega ratio, more efforts are needed to estimate this robustness, especially in the context of complex models. Here, we focused on the branch-site codon model. We investigated its robustness on a large set of simulated data. First, we investigated the impact of sequence divergence. We found evidence of underestimation of the synonymous substitution rate for values as small as 0.5, with a slight increase in false positives for the branch-site test. When dS increases further, underestimation of dS is worse, but false positives decrease. Interestingly, the detection of true positives follows a similar distribution, with a maximum for intermediary values of dS. Thus, high dS is more of a concern for a loss of power (false negatives) than for false positives of the test. Second, we investigated the impact of GC content. We showed that there is no significant difference of false positives between high GC (up to similar to 80%) and low GC (similar to 30%) genes. Moreover, neither shifts of GC content on a specific branch nor major shifts in GC along the gene sequence generate many false positives. Our results confirm that the branch-site is a very conservative test.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Annonaceae includes cultivated species of economic interest and represents an important source of information for better understanding the evolution of tropical rainforests. In phylogenetic analyses of DNA sequence data that are used to address evolutionary questions, it is imperative to use appropriate statistical models. Annonaceae are cases in point: Two sister clades, the subfamilies Annonoideae and Malmeoideae, contain the majority of Annonaceae species diversity. The Annonoideae generally show a greater degree of sequence divergence compared to the Malmeoideae, resulting in stark differences in branch lengths in phylogenetic trees. Uncertainty in how to interpret and analyse these differences has led to inconsistent results when estimating the ages of clades in Annonaceae using molecular dating techniques. We ask whether these differences may be attributed to inappropriate modelling assumptions in the phylogenetic analyses. Specifically, we test for (clade-specific) differences in rates of non-synonymous and synonymous substitutions. A high ratio of nonsynonymous to synonymous substitutions may lead to similarity of DNA sequences due to convergence instead of common ancestry, and as a result confound phylogenetic analyses. We use a dataset of three chloroplast genes (rbcL, matK, ndhF) for 129 species representative of the family. We find that differences in branch lengths between major clades are not attributable to different rates of non-synonymous and synonymous substitutions. The differences in evolutionary rate between the major clades of Annonaceae pose a challenge for current molecular dating techniques that should be seen as a warning for the interpretation of such results in other organisms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

GB virus C/hepatitis G (GBV-C) is an RNA virus of the family Flaviviridae. Despite replicating with an RNA-dependent RNA polymerase, some previous estimates of rates of evolutionary change in GBV-C suggest that it fixes mutations at the anomalously low rate of similar to 100(-7) nucleotide substitution per site, per year. However, these estimates were largely based on the assumption that GBV-C and its close relative GBV-A (New World monkey GB viruses) codiverged with their primate hosts over millions of years. Herein, we estimated the substitution rate of GBV-C using the largest set of dated GBV-C isolates compiled to date and a Bayesian coalescent approach that utilizes the year of sampling and so is independent of the assumption of codivergence. This revealed a rate of evolutionary change approximately four orders of magnitude higher than that estimated previously, in the range of 10(-2) to 10(-3) sub/site/year, and hence in line with those previously determined for RNA viruses in general and the Flaviviridae in particular. In addition, we tested the assumption of host-virus codivergence in GBV-A by performing a reconciliation analysis of host and virus phylogenies. Strikingly, we found no statistical evidence for host-virus codivergence in GBV-A, indicating that substitution rates in the GB viruses should not be estimated from host divergence times.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The molecular clock does not tick at a uniform rate in all taxa but maybe influenced by species characteristics. Eusocial species (those with reproductive division of labor) have been predicted to have faster rates of molecular evolution than their nonsocial relatives because of greatly reduced effective population size; if most individuals in a population are nonreproductive and only one or few queens produce all the offspring, then eusocial animals could have much lower effective population sizes than their solitary relatives, which should increase the rate of substitution of nearly neutral mutations. An earlier study reported faster rates in eusocial honeybees and vespid wasps but failed to correct for phylogenetic nonindependence or to distinguish between potential causes of rate variation. Because sociality has evolved independently in many different lineages, it is possible to conduct a more wide-ranging study to test the generality of the relationship. We have conducted a comparative analysis of 25 phylogenetically independent pairs of social lineages and their nonsocial relatives, including bees, wasps, ants, termites, shrimps, and mole rats, using a range of available DNA sequences (mitochondrial and nuclear DNA coding for proteins and RNAs, and nontranslated sequences). By including a wide range of social taxa, we were able to test whether there is a general influence of sociality on rates of molecular evolution and to test specific predictions of the hypothesis: (1) that social species have faster rates because they have reduced effective population sizes; (2) that mitochondrial genes would show a greater effect of sociality than nuclear genes; and (3) that rates of molecular evolution should be correlated with the degree of sociality. We find no consistent pattern in rates of molecular evolution between social and nonsocial lineages and no evidence that mitochondrial genes show faster rates in social taxa. However, we show that the most highly eusocial Hymenoptera do have faster rates than their nonsocial relatives. We also find that social parasites (that utilize the workers from related species to produce their own offspring) have faster rates than their social relatives, which is consistent with an effect of lower effective population size on rate of molecular evolution. Our results illustrate the importance of allowing for phylogenetic nonindependence when conducting investigations of determinants of variation in rate of molecular evolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hepatitis B virus (HBV) infection is a significant public health concern with 350 million chronic carriers worldwide. Eight HBV genotypes (A-H) have been described so far. Genotype E (HBV/E) is widely distributed in West Africa and has rarely been found in other continents, except for a few cases in individuals with an African background. In this study, we characterized HBV genotypes in Quibdo, Colombia, by partial S/P gene sequencing, and found, for the first time, HBV/E circulating in nine Afro-Colombian patients who had no recent contact with Africa. The presence of HBV/E in this community as a monophyletic group suggests that it was a result of a recent introduction by some Afro-descendent contact or, alternatively, that the virus came with slaves brought to Colombia. By using sequences with sampling dates, we estimated the substitution rate to be about 3.2x10(-4) substitutions per site per year, which resulted in a time to the most recent common ancestor (TMRCA) of 29 years. In parallel, we also estimated the TMRCA for HBV/E by using two previously estimated substitution rates (7.7x10(-4) and 1.5x10(-5) substitutions per site per year). The TMRCA was around 35 years under the higher rate and 1500 years under the slower rate. In sum, this work reports for the first time the presence of an exclusively African HBV genotype circulating in South America. We also discuss the time of the entry of this virus into America based on different substitution rates estimated for HBV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hepatitis delta virus (HDV) is widely distributed and associated with fulminant hepatitis epidemics in areas with high prevalence of HBV. Several studies performed in the 1980s showed data on HDV infection in South America, but there are no studies on the viral dynamics of this virus. The aim of this study was to conduct an evolutionary analysis of hepatitis delta genotype 3 (HDV/3) prevalent in South America: estimate its nucleotide substitution rate, determine the time of most recent ancestor (TMRCA) and characterize the epidemic history and evolutionary dynamics. Furthermore, we characterized the presence of HBV/HDV infection in seven samples collected from patients who died due to fulminant hepatitis from Amazon region in Colombia and included them in the evolutionary analysis. This is the first study reporting HBV and HDV sequences from the Amazon region of Colombia. Of the seven Colombian patients, five were positive for HBV-DNA and HDV-RNA. Of them, two samples were successfully sequenced for HBV (subgenotypes F3 and Fib) and the five samples HDV positive were classified as HDV/3. By using all HDV/3 available reference sequences with sampling dates (n = 36), we estimated the HDV/3 substitution rate in 1.07 x 10(-3) substitutions per site per year (s/s/y), which resulted in a time to the most recent common ancestor (TMRCA) of 85 years. Also, it was determined that HDV/3 spread exponentially from early 1950s to the 1970s in South America. This work discusses for the first time the viral dynamics for the HDV/3 circulating in South America. We suggest that the measures implemented to control HBV transmission resulted in the control of HDV/3 spreading in South America, especially after the important raise in this infection associated with a huge mortality during the 1950s up to the 1970s. The differences found among HDV/3 and the other HDV genotypes concerning its diversity raises the hypothesis of a different origin and/or a different transmission route. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hantaviruses are rodent-borne Bunyaviruses that infect the Arvicolinae, Murinae, and Sigmodontinae subfamilies of Muridae. The rate of molecular evolution in the hantaviruses has been previously estimated at approximately 10(-7) nucleotide substitutions per site, per year (substitutions/site/year), based on the assumption of codivergence and hence shared divergence times with their rodent hosts. If substantiated, this would make the hantaviruses among the slowest evolving of all RNA viruses. However, as hantaviruses replicate with an RNA-dependent RNA polymerase, with error rates in the region of one mutation per genome replication, this low rate of nucleotide substitution is anomalous. Here, we use a Bayesian coalescent approach to estimate the rate of nucleotide substitution from serially sampled gene sequence data for hantaviruses known to infect each of the 3 rodent subfamilies: Araraquara virus ( Sigmodontinae), Dobrava virus ( Murinae), Puumala virus ( Arvicolinae), and Tula virus ( Arvicolinae). Our results reveal that hantaviruses exhibit shortterm substitution rates of 10(-2) to 10(-4) substitutions/site/year and so are within the range exhibited by other RNA viruses. The disparity between this substitution rate and that estimated assuming rodent-hantavirus codivergence suggests that the codivergence hypothesis may need to be reevaluated.