1000 resultados para subduction complex


Relevância:

100.00% 100.00%

Publicador:

Resumo:

New structural data from Elephant Island and adjacent islands are presented with the objective to improve the understanding of subduction kinematics in the area northeast of the Antarctic Peninsula. on the island, a first deformation phase, D-1, produced a strong SL fabric with steep stretching and mineral lineations, partly defined by relatively high pressure minerals, such as crossite and glaucophane. D-1 is interpreted to record southward subduction along an E-W trench with respect to the present position of the island. A second phase, D-2, led to intense folding with steep E-W-trending axial surfaces. The local presence of sinistral C'-type sheer bands related to this phase and the oblique inclination of the L-2 stretching lineations are the main arguments to interpret this phase as representing oblique sinistral transpressive shear along steep, approximately E-W-trending shear zones, with the northern (Pacific) block going down with respect to the southern (Antarctic Peninsula) block. The sinistral strike-slip component may represent a trench-linked strike-slip movement as a consequence of oblique subduction. Lithostatic pressure decreased and temperature increased to peak values during D-2, interpreted to represent the collision of thickened oceanic crust with the active continental margin. The last deformation phase, D-3, is characterised by post-metamorphic kink bands, partially forming conjugate sets consistent with E-W shortening and N-S extension. The rock units that underlie the island probably rotated during D-3, in Cenozoic times, together with the trench, from an NE-SW to the present ENE-WSW position, during the progressive opening of the Scotia Sea. The similarity between the strain orientation of D-3 and that of the sinistral NE-SW Shackleton Fracture Zone is consistent with this interpretation. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A subduction complex composed of ocean floor material mixed with arc-derived metasediments crops out in the Elephant Island group and at Smith Island, South Shetland Islands, Antarctica, with metamorphic ages of 120-80 Ma and 58-47 Ma? respectively. Seven metamorphic zones (I-VII) mapped on Elephant Island delineate a gradual increase in metamorphic grade from the pumpellyite-actinolite facies, through the crossite-epidote blueschist facies, to the lower amphibolite facies. Geothermometry in garnet-amphibole and garnet-biotite pairs yields temperatures of about 350 degrees C in zone III to about 525 degrees C in zone VII. Pressures were estimated on the basis of Si content in white mica, Al2O3 content in alkali amphibole, Na-M4/Al-IV in sodic-calcic and calcic amphibole, Al-VI/Si in calcic amphibole, and jadeite content in clinopyroxene. Mean values vary from about 6-7.5 kbar in zone II to about 5 kbar in zone VII. Results from the other islands of the Elephant Island group are comparable to those from the main island; Smith Island yielded slightly higher pressures, up to 8 kbar, with temperatures estimated between 300 and 350 degrees C. Zoned minerals and other textural indications locally enable inference of P-T-t trajectories, all with a clockwise evolution. A reconstruction in space and time of these P-T-t paths allows an estimate of the thermal structure in the upper crust during the two ductile deformation phases (D-1 & D-2) that affected the area. This thermal structure is in good agreement with the one expected for a subduction zone. The arrival and collision of thickened oceanic crust may have caused the accretion and preservation of the subduction complex. In this model, D-1 represents the subduction movements expressed by the first vector of the clockwise P-T-t path, D-2 reflects the collision corresponding to the second vector with increasing temperature and decreasing pressure, and D-3 corresponds to isostatic uplift accompanied by erosion, under circumstances of decreasing temperature and pressure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pore fluid and sediment Li concentrations and isotopic ratios provide important insights on the hydrology, sediment contribution to the arc volcanoes and fluid-sediment reactions at the dominantly non-accretionary Costa Rica subduction zone. Ocean Drilling Program Site 1039 in the trench axis provides a reference section of 400 m of the incoming sediments, and Site 1040, situated arcward from the trench, consists of a deformed sedimentary wedge and apron sediments, the décollement, and the partially dewatered underthrust sediment section. At the reference site, pore fluids show important isotopic variations (delta6Li=-21.7 to -37.8 per mil), reflecting the interplay of in situ alteration of volcanic material and ion exchange with clay minerals. In the basal section, a reversal of Li concentration and delta6Li toward seawater values is observed, providing supporting evidence for a lateral seawater flow system in the upper oceanic basement underlying this sediment section. At Site 1040, pore fluid of the lower deformed wedge sediments and within the décollement is enriched in Li and the isotopic compositions are relatively light, suggesting infiltration of a deep-seated fluid. The delta6Li value of -22 per mil of this Li-enriched fluid (261 µM), when compared with the delta6Li value of the subducted sediment section (-11 per mil), suggests that the deep source fluid originates from mineral fluid dehydration and transformation reactions at temperatures of 100 to 150°C, consistent with the temperature range of the up-dip seismogenic zone and of transformation of smectite to illite. The distribution of Li and its isotopes in the underthrust section are similar to those at the reference site, indicating near complete subduction of the incoming sediments and that early dewatering of the underthrust sediments occurs predominantly by lateral flow into the ocean. The hemipelagic clay-rich sediment section of the subducting plate carries most of the Li into this subduction zone, and the pelagic diatomaceous and nannofossil calcareous oozes contain little Li. The Li isotopes of both the clay-rich hemipelagic sediments and of the pelagic oozes are, however, similar, with delta6Li values of -9 to -12 per mil. The observations that (1) the delta6Li values of the underthrust sediments are distinctly lower than that of the mantle, and (2) the lavas of the Costa Rican volcanoes are enriched in Li and 7Li, provide an approximation of the contribution of the subducted sediments to the arc volcanoes. A first order mass balance calculation suggests that approximately half of the Li flux delivered by subducted sediments and altered oceanic crust into the Middle American Trench is recycled to the Costa Rican arc and at most a quarter of sedimentary Li is returned into the ocean through thrust faults, primarily the décollement thrust.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The subduction zone is an important site of the fluid activity and recycling of chemical elements. The fluid characteristic of deep subduction zones is a top scientific problem attracting the petrologists, geochemists and tectonists. In this dissertation, the characteristics of fluid activity within a deep subduction zone have been explored on the basis of the studies on the petrography, mineral chemistry, fluid inclusions, geochemistry and metamorphic P–T conditions of the omphacite-bearing high-pressure veins and related hosts from the low-temperature/high-pressure metamorphic belt in southwestern Tianshan, China. Multiple high-pressure veins are exposed in host eclogites and blueschists. The veins are composed predominantly of omphacite, garnet, quartz, and other minerals. Some veins contain cm-sized rutiles. In general, the vein can be divided into three types, the ‘in situ dehydration’ vein, the ‘external transport’ vein and the ‘composite’ vein. The omphacites within the veins and related host rocks contain lots of two-phase or three-phase primary fluid inclusions. The final melting temperature (Tfm) of fluid inclusions varies mainly from -0.6 to -4.3 °C, the homogeneous temperature (Th) varies from 185 to 251 °C, the salinity varies from 1.1 to 6.9 wt.% NaCl equivalent and the density varies from 0.81 to 0.9 g/cm3. The fluids were released under the conditions of T = 520–580°C and P = 15–19 kbar at blueschist facies to eclogite facies transition. The fluids include not only Li, Be, LILE, La, Pb-enriched and HFSE- and HREE-depleted aqueous fluids but also HFSE (Ti-Nb-Ta)-rich aqueous fluids. The complex composed of aluminosilicate polymers and F was the catalyst which had caused the Ti-Nb-Ta to be dissolved into the fluids. During the transport of the LILE-rich and HFSE- and HREE-poor fluids, they can exchange some chemical elements with country rocks and leach some trace elements in some extent. The rutile could be precipitated from the HFSE (Ti-Nb-Ta)-rich aqueous fluids when CO2 was added into the fluids. The host rocks could obtain some elements, such as Ca, Cs, Rb, Ba and Th, from the external fluids. The fluids with complex composition had been released within the deep subduction zone (>50 km) in Early Carboniferous during the subduction of the South Tianshan Ocean under the Yili–Central Tianshan Plate. The results obtained in this dissertation have made new progress compared with the published data (e.g. Tatsumi, 1989; Becker et al., 1999; Scambelluri and Philippot, 2001; Manning, 2004; Hermann et al., 2006; Spandler and Hermann, 2006).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract In this study structural and finite strain data are used to explore the tectonic evolution and the exhumation history of the Chilean accretionary wedge. The Chilean accretionary wedge is part of a Late Paleozoic subduction complex that developed during subduction of the Pacific plate underneath South America. The wedge is commonly subdivided into a structurally lower Western Series and an upper Eastern Series. This study shows the progressive development of structures and finite strain from the least deformed rocks in the eastern part of the Eastern Series of the accretionary wedge to higher grade schist of the Western Series at the Pacific coast. Furthermore, this study reports finite-strain data to quantify the contribution of vertical ductile shortening to exhumation. Vertical ductile shortening is, together with erosion and normal faulting, a process that can aid the exhumation of high-pressure rocks. In the east, structures are characterized by upright chevron folds of sedimentary layering which are associated with a penetrative axial-plane foliation, S1. As the F1 folds became slightly overturned to the west, S1 was folded about recumbent open F2 folds and an S2 axial-plane foliation developed. Near the contact between the Western and Eastern Series S2 represents a prominent subhorizontal transposition foliation. Towards the structural deepest units in the west the transposition foliation became progressively flat lying. Finite-strain data as obtained by Rf/Phi and PDS analysis in metagreywacke and X-ray texture goniometry in phyllosilicate-rich rocks show a smooth and gradual increase in strain magnitude from east to west. There are no evidences for normal faulting or significant structural breaks across the contact of Eastern and Western Series. The progressive structural and strain evolution between both series can be interpreted to reflect a continuous change in the mode of accretion in the subduction wedge. Before ~320-290 Ma the rocks of the Eastern Series were frontally accreted to the Andean margin. Frontal accretion caused horizontal shortening and upright folds and axial-plane foliations developed. At ~320-290 Ma the mode of accretion changed and the rocks of the Western Series were underplated below the Andean margin. This basal accretion caused a major change in the flow field within the wedge and gave rise to vertical shortening and the development of the penetrative subhorizontal transposition foliation. To estimate the amount that vertical ductile shortening contributed to the exhumation of both units finite strain is measured. The tensor average of absolute finite strain yield Sx=1.24, Sy=0.82 and Sz=0.57 implying an average vertical shortening of ca. 43%, which was compensated by volume loss. The finite strain data of the PDS measurements allow to calculate an average volume loss of 41%. A mass balance approximates that most of the solved material stays in the wedge and is precipitated in quartz veins. The average of relative finite strain is Sx=1.65, Sy=0.89 and Sz=0.59 indicating greater vertical shortening in the structurally deeper units. A simple model which integrates velocity gradients along a vertical flow path with a steady-state wedge is used to estimate the contribution of deformation to ductile thinning of the overburden during exhumation. The results show that vertical ductile shortening contributed 15-20% to exhumation. As no large-scale normal faults have been mapped the remaining 80-85% of exhumation must be due to erosion.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pore fluid and sediment chemical and isotopic data were obtained for samples from Ocean Drilling Program (ODP) Leg 205 Sites 1253, 1254, and 1255 in the Costa Rica subduction zone. The chemical and isotopic data reported here were generated in our shore-based laboratories to complement shipboard inorganic geochemical data. Li isotopic analyses were carried out by L.-H. Chan at Louisiana State University (USA). The data reported herein include fluoride, bromide, rubidium, cesium, and barium concentrations; Li and Sr isotopic compositions in pore fluids; and Rb, Cs, and Ba concentrations in representative bulk sediments. The data also include new pore fluid fluoride and bromide concentrations from corresponding ODP Leg 170 Sites 1039, 1040, and 1043. O.M. Saether's Site 1039 and 1040 fluoride concentration data are shown for comparison. Basal sediment fluoride concentrations and Li and Sr isotope ratios at both Sites 1253 and 1039 show reversals that approach modern seawater values. Br/Cl ratios are, however, conservative throughout the sediment section at Sites 1039 and 1253. The observed sharp F and Br concentration maxima, Rb and K concentration minima, the most radiogenic 87Sr/86Sr ratios, and highest 7Li values along the décollement and fracture zone (Sites 1040, 1043, 1254, and 1255) strengthen the evidence obtained during Leg 170 that a deeply sourced fluid, originating from fluid-rock reactions at ~150°C and corresponding to between 10 and 15 km depth, is transporting solutes to the ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We determined the C and N concentrations and isotopic compositions of sediments in the prism sampled during Ocean Drilling Program Legs 170 and 205 offshore Costa Rica, with the goals of evaluating sediment sources and extents of diagenesis and identifying any effects of infiltrating fluids on the sedimentary C and N. The sediments from Leg 170 Site 1040 contain 0.85-1.96 wt% total organic carbon (TOC) with Vienna Peedee belemnite (VPDB) d13CVPDB from -26.3 per mil to -22.5 per mil, and 832-2221 ppm total nitrogen (TN) with d15Nair from +3.5 per mil to +6.6 per mil. Sediment TN concentrations and d15N values show dramatic downhole increases within the uppermost 130 m of the section and more gradual downhole decreases from 130 meters below seafloor (mbsf) to the base of the décollement at ~370 mbsf. Concentrations and isotopic compositions of TOC are relatively uniform within the entire section, showing some minor perturbation within the décollement zone. In the uppermost 100 m, upsection increases in TN concentrations at constant TOC concentrations produce significant increases in atomic TOC/TN ratios from ~8 to ~18. Carbonate (calcite) contents in the wedge sediments are generally low (<4 wt%), but the d13C and Vienna standard mean ocean water (VSMOW) d18OVSMOW values vary significantly from -26.1 per mil to +4.1 per mil and from +30.0 per mil to +35.3 per mil, respectively. Concentrations and isotopic compositions of TOC and TN for sediments from Leg 205 Sites 1254 and 1255 overlap well with C-N data for sediments from the same depth intervals obtained during Leg 170 at Site 1040.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sediment cored within the Barbados subduction complex at Sites 541 and 542 are underconsolidated. Underconsolidation and changes in physical properties of the cored section can be related to excess pore water pressure that equals the lithostatic load at Site 542 and to major thrust faulting observed at Site 541. Apparently, the pore fluids within the subduction complex are absorbing the tectonic shock of underthrusting. Sediment sampled from the reference Site 543 on the adjacent Atlantic Plate are also underconsolidated. However, underconsolidation in Hole 543 is apparently due to the movement of excess nitrogen gas observed deeper in the hole. Excess gas was not observed at Sites 541 and 542.