944 resultados para sub-surface horizontal flow


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The treatment efficiency of a wetland system requires a balance between pollutant loading rate and hydraulic retention time (HRT), hydraulic loading rate (HLR) and the suitable substrate to be used. The aim of this study was to investigate the treatment efficiency of horizontal subsurface flow constructed wetland planted with phragmites australis and scirpus maritimus containing three different substrates to treat agricultural wastewater under short term operation. Alum sludge and zeolite were used as substrates and gravel was used as a control for a laboratory-scale horizontal flow constructed wetland (CW) units that were made of high-density Polyethylene. The units were operated under 2, 3 and 4 days of HRTs and at different HLR for each substrate. Each beds received 0.012 m3/d to 0.08 m3/d of synthetic wastewater corresponding to a HLR of 0.035 to 0.243 m/d and a COD loading rate of 0.0148 kg COD (m2.d)-1 to 0.026 kg COD (m2.d)-1. The relationships between the substrate, retention time and removal efficiency, especially of organic matter and nutrient removal were investigated. All units showed relatively stable removal for COD during the entire operational period. The COD removal for all units and HRT were in ranged from 67% to 93%. The zeolite unit achieved significantly higher removal of TN, NH4-N and TSS compared to alum sludge and gravel unit at all HRT. The unit with zeolite was highly effective in removing TN (54 to 96%), NH4-N (50 to 99%) and TSS (91 to 96%) respectively, at 2, 3 and 4 days of HRT. Meanwhile, alum sludge was highly effective in removing phosphate. The removal of phosphate from alum sludge unit was ranged from 94 to 97% for all HRT. Compared to gravel CW unit, zeolite and alum sludge CW were proved to be tolerant to high organic loadings and nutrients, suggesting these substrates as viable options for biological treatment of agricultural wastewater.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect that plants {Typha latifolia) as well as root-bed medium physical and chemical characteristics have on the treatment of primary treated domestic wastewater within a vertical flow constructed wetland system was investigated. Five sets of cells, with two cells in each set, were used. Each cell was made of concrete and measured 1 .0 m X 1 .0 m and was 1.3 m deep. Four different root-bed media were tested : Queenston Shale, Fonthill Sand, Niagara Shale and a Michigan Sand. Four of the sets contained plants and a single type of root-bed medium. The influence of plants was tested by operating a Queenston Shale set without plants. Due to budget constraints no replicates were constructed. All of the sets were operated independently and identically for twenty-eight months. Twelve months of data are presented here, collected after 16 months of continuous operation. Root-bed medium type did not influence BOD5 removal. All of the sets consistently met Ontario Ministry of Environment (MOE) requirements (<25 mg/L) for BOD5 throughout the year. The 12 month average BOD5 concentration from all sets with plants was below 2.36 mg/L. All of the sets were within MOE discharge requirements (< 25 mg/L) for suspended solids with set effluent concentrations ranging from 1.53 to 14.80 mg/L. The Queenston Shale and Fonthill Sand media removed the most suspended solids while the Niagara Shale set produced suspended solids. The set containing Fonthill Sand was the only series to meet MOE discharge requirements (< Img/L) for total phosphorus year-round with a twelve month mean effluent concentration of 0.23 mg/L. Year-round all of the root-bed media were well below MOE discharge requirements (< 20mg/L in winter and < 10 mg/L in sumnner) for ammonium. The Queenston Shale and Fonthill Sand sets removed the most total nitrogen. Plants had no effect on total nitrogen removal, but did influence how nitrogen was cycled within the system. Plants increased the removal of suspended solids by 14%, BOD5 by 10% and total phosphorus by 22%. Plants also increased the amount of dissolved oxygen that entered the system. During the plant growing season removal of total phosphorus was better in all sets with plants regardless of media type. The sets containing Queenston Shale and Fonthill Sand media achieved the best results and plants in the Queenston Shale set increased treatment efficiency for every parameter except nitrogen. Vertical flow wetland sewage treatment systems can be designed and built to consistently meet MOE discharge requirements year-round for BOD5, suspended solids, total phosphorus and ammonium. This system Is generally superior to the free water systems and sub-surface horizontal flow systems in cold climate situations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combination of experimental methods was applied at a clogged, horizontal subsurface flow (HSSF) municipal wastewater tertiary treatment wetland (TW) in the UK, to quantify the extent of surface and subsurface clogging which had resulted in undesirable surface flow. The three dimensional hydraulic conductivity profile was determined, using a purpose made device which recreates the constant head permeameter test in-situ. The hydrodynamic pathways were investigated by performing dye tracing tests with Rhodamine WT and a novel multi-channel, data-logging, flow through Fluorimeter which allows synchronous measurements to be taken from a matrix of sampling points. Hydraulic conductivity varied in all planes, with the lowest measurement of 0.1 md1 corresponding to the surface layer at the inlet, and the maximum measurement of 1550 md1 located at a 0.4m depth at the outlet. According to dye tracing results, the region where the overland flow ceased received five times the average flow, which then vertically short-circuited below the rhizosphere. The tracer break-through curve obtained from the outlet showed that this preferential flow-path accounted for approximately 80% of the flow overall and arrived 8 h before a distinctly separate secondary flow-path. The overall volumetric efficiencyof the clogged system was 71% and the hydrology was simulated using a dual-path, dead-zone storage model. It is concluded that uneven inlet distribution, continuous surface loading and high rhizosphere resistance is responsible for the clog formation observed in this system. The average inlet hydraulic conductivity was 2 md1, suggesting that current European design guidelines, which predict that the system will reach an equilibrium hydraulic conductivity of 86 md1, do not adequately describe the hydrology of mature systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sub-surface minerals are in most cases considered to be the proprietary right of a country should those minerals be found within its borders. PRO169 (Indigenous Peoples’ Rights, International Labour Organization) has recorded instances where the private land of indigenous peoples has been pilfered by a government – often through the sale of a contract to a private company, and without the consent of the people living on that land. Other times, indigenous peoples, the government they find themselves living in, and the company that bought mining rights engage in consultation. But these practices are far from transparent, equitable, or fair as indigenous peoples are often unskilled in contractual law and do not have the same legal resources as the company or government does. This paper argues that the sub-surface minerals found within the territory of indigenous tribes should be legally allocated as theirs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 3D Water Chemistry Atlas is an intuitive, open source, Web-based system that enables the three-dimensional (3D) sub-surface visualization of ground water monitoring data, overlaid on the local geological model (formation and aquifer strata). This paper firstly describes the results of evaluating existing virtual globe technologies, which led to the decision to use the Cesium open source WebGL Virtual Globe and Map Engine as the underlying platform. Next it describes the backend database and search, filtering, browse and analysis tools that were developed to enable users to interactively explore the groundwater monitoring data and interpret it spatially and temporally relative to the local geological formations and aquifers via the Cesium interface. The result is an integrated 3D visualization system that enables environmental managers and regulators to assess groundwater conditions, identify inconsistencies in the data, manage impacts and risks and make more informed decisions about coal seam gas extraction, waste water extraction, and water reuse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the 3D Water Chemistry Atlas - an open source, Web-based system that enables the three-dimensional (3D) sub-surface visualization of ground water monitoring data, overlaid on the local geological model. Following a review of existing technologies, the system adopts Cesium (an open source Web-based 3D mapping and visualization interface) together with a PostGreSQL/PostGIS database, for the technical architecture. In addition a range of the search, filtering, browse and analysis tools were developed that enable users to interactively explore the groundwater monitoring data and interpret it spatially and temporally relative to the local geological formations and aquifers via the Cesium interface. The result is an integrated 3D visualization system that enables environmental managers and regulators to assess groundwater conditions, identify inconsistencies in the data, manage impacts and risks and make more informed decisions about activities such as coal seam gas extraction, waste water extraction and re-use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under stable conditions of stratification of the sea, evidence of generic differences of the associated bacterial flora of the water masses has been obtained, between surface and sub-surface water. Gram negative rods, especially pseudomonads and achromobacters were more frequent at the surface. The fermentative and oxidase negative flora was more frequent in sub-surface water. The surface water in general had a greater variety of bacterial types while the sub-surface water had a flora with a greater range of biochemical activity. These results are discussed in relation to the hydrological condition of the water masses and the bacterial flora of freshly caught fish.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of the study on the Arabian Sea sub-surface salinity minima (ASSM). The data collected under the North Arabian Sea Environment and Ecosystem Research (NASEER) programme and World Ocean Circulation Experiment (WOCE) has been used in the study. Study of the Arabian Sea water masses is most significant in understanding marine productivity and monsoonal reversal features. Analysis of the data shows that the Arabian Sea sub-surface salinity minima (ASSM) can be found between 25.8 to 26.0 Sigma Theta surfaces. ASSM originates from the south and south east. It is inferred from the results that the salt content of the ASSM varies during different seasons. Appreciable mixing of Arabian Sea salinity minima is observed over Murray Ridge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concentrations and flux densities of methane were determined during a lagrangian study of an advective filament in the permanent upwelling region off western Mauritania. Newly upwelled waters were dominated by the presence of North Atlantic Central Water and surface CH4 concentrations of 2.2 ± 0.3 nmol L-1 were largely in equilibrium with atmospheric values, with surface saturations of 101.7 ± 14%. As the upwelling filament aged and was advected offshore, CH4 enriched South Atlantic Central Water from intermediate depths of 100 to 350m was entrained into the surface mixed layer of the filament following intense mixing associated with the shelf break. Surface saturations increased to 198.9 ± 15% and flux densities increased from a mean value over the shelf of 2.0 ± 1.1 µmol m-2d-1 to a maximum of 22.6 µmol m-2d-1. Annual CH4 emissions for this persistent filament were estimated at 0.77 ± 0.64 Gg which equates to a maximum of 0.35% of the global oceanic budget. This raises the known outgassing intensity of this area and highlights the importance of advecting filaments from upwelling waters as efficient vehicles for air-sea exchange.