915 resultados para sub-micron
Resumo:
We report the fabrication of planar sub-micron gratings in silicon with a period of 720 nm using a modified Michelson interferometer and femtosecond laser radiation. The gratings consist of alternated stripes of laser ablated and unmodified material. Ablated stripes are bordered by parallel ridges which protrude above the unmodified material. In the regions where ridges are formed, the laser radiation intensity is not sufficient to cause ablation. Nevertheless, melting and a significant temperature increase are expected, and ridges may be formed due to expansion of silicon during resolidification or silicon oxidation. These conclusions are consistent with the evolution of the stripes morphology as a function of the distance from the center of the grating. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We report the fabrication of planar sub-micron gratings in silicon with a period of 720 nm using a modified Michelson interferometer and femtosecond laser radiation. The gratings consist of alternated stripes of laser ablated and unmodified material. Ablated stripes are bordered by parallel ridges which protrude above the unmodified material. In the regions where ridges are formed, the laser radiation intensity is not sufficient to cause ablation. Nevertheless, melting and a significant temperature increase are expected, and ridges may be formed due to expansion of silicon during resolidification or silicon oxidation. These conclusions are consistent with the evolution of the stripes morphology as a function of the distance from the center of the grating.
Resumo:
Results of analysis of variations of sum light ions concentration and their connections with radon, galactic cosmic rays intensity and content of sub-micron aerosols by diameter ≥ 0.1 micron in surface boundary layer of Tbilisi city are given.
Resumo:
The convective-diffusive transport of sub-micron aerosols in an oscillatory laminar flow within a 2-D single bifurcation is studied, using order-of-magnitude analysis and numerical simulation using a commercial software (FEMLAB®). Based on the similarity between momentum and mass transfer equations, various transient mass transport regimes are classified and scaled according to Strouhal and beta numbers. Results show that the mass transfer rate is highest at the carinal ridge and there is a phase-shift in diffusive transport time if the beta number is greater than one. It is also shown that diffusive mass transfer becomes independent of the oscillating outer flow if the Strouhal number is greater than one.
Resumo:
The kinetics of reactive uptake of gaseous N2O5 on sub-micron aerosol particles composed of aqueous ammonium sulfate, ammonium hydrogensulfate and sodium nitrate has been investigated. Uptake was measured in a laminar flow reactor, coupled with a differential mobility analyser (DMA) to obtain the aerosol size distribution, with N2O5 detection using NO chemiluminescence. FTIR spectroscopy was used to obtain information about the composition and water content of the aerosol particles under the conditions used in the kinetic measurements. The aerosols were generated by the nebulisation of aqueous salt solutions. The uptake coefficient on the sulfate salts was in the range [gamma]=0.0015 to 0.033 depending on temperature, humidity and phase of the aerosol. On sodium nitrate aerosols the values were much lower, [gamma]<0.001, confirming the inhibition of N2O5 hydrolysis by nitrate ions. At high humidity (>50% r.h.) the uptake coefficient on liquid sulfate aerosols is independent of water content, but at lower humidity, especially below the efflorescence point, the reactivity of the aerosol declines, correlating with the lower water content. The lower uptake rate on solid aerosols may be due to limitations imposed by the liquid volume in the particles. Uptake on sulfate aerosols showed a negative temperature dependence at T>290 K but no significant temperature dependence at lower temperatures. The results are generally consistent with previous models of N2O5 hydrolysis where the reactive intermediate is NO2+ produced by autoionisation of nitrogen pentoxide in the condensed phase.
Resumo:
Due to its high Curie temperature of 420K and band structure calculations predicting 100% spin polarisation, Sr2FeMoO6 is a potential candidate for spintronic devices. However, the preparation of good quality thin films has proven to be a non-trivial task. Epitaxial Sr2FeMoO6 thin films were prepared by pulsed laser deposition on different substrates. Differing from previous reports a post-deposition annealing step at low oxygen partial pressure (10-5 mbar) was introduced and enabled the fabrication of reproducible, high quality samples. According to the structural properties of the substrates the crystal structure and morphology of the thin films are modified. The close interrelation between the structural, magnetic and electronic properties of Sr2FeMoO6 was studied. A detailed evaluation of the results allowed to extract valuable information on the microscopic nature of magnetism and charge transport. Smooth films with a mean roughness of about 2 nm have been achieved, which is a pre-requisite for a possible inclusion of this material in future devices. In order to establish device-oriented sub-micron patterning as a standard technique, electron beam lithography and focussed ion beam etching facilities have been put into operation. A detailed characterisation of these systems has been performed. To determine the technological prospects of new spintronics materials, the verification of a high spin polarisation is of vital interest. A popular technique for this task is point contact Andreev reflection (PCAR). Commonly, the charge transport in a transparent metal-superconductor contact of nanometer dimensions is attributed solely to coherent transport. If this condition is not fulfilled, inelastic processes in the constriction have to be considered. PCAR has been applied to Sr2FeMoO6 and the Heusler compound Co2Cr0.6Fe0.4Al. Systematic deviations between measured spectra and the standard models of PCAR have been observed. Therefore existing approaches have been generalised, in order to include the influence of heating. With the extended model the measured data was successfully reproduced but the analysis has revealed grave implications for the determination of spin polarisation, which was found to break down completely in certain cases.
Resumo:
Despite the several issues faced in the past, the evolutionary trend of silicon has kept its constant pace. Today an ever increasing number of cores is integrated onto the same die. Unfortunately, the extraordinary performance achievable by the many-core paradigm is limited by several factors. Memory bandwidth limitation, combined with inefficient synchronization mechanisms, can severely overcome the potential computation capabilities. Moreover, the huge HW/SW design space requires accurate and flexible tools to perform architectural explorations and validation of design choices. In this thesis we focus on the aforementioned aspects: a flexible and accurate Virtual Platform has been developed, targeting a reference many-core architecture. Such tool has been used to perform architectural explorations, focusing on instruction caching architecture and hybrid HW/SW synchronization mechanism. Beside architectural implications, another issue of embedded systems is considered: energy efficiency. Near Threshold Computing is a key research area in the Ultra-Low-Power domain, as it promises a tenfold improvement in energy efficiency compared to super-threshold operation and it mitigates thermal bottlenecks. The physical implications of modern deep sub-micron technology are severely limiting performance and reliability of modern designs. Reliability becomes a major obstacle when operating in NTC, especially memory operation becomes unreliable and can compromise system correctness. In the present work a novel hybrid memory architecture is devised to overcome reliability issues and at the same time improve energy efficiency by means of aggressive voltage scaling when allowed by workload requirements. Variability is another great drawback of near-threshold operation. The greatly increased sensitivity to threshold voltage variations in today a major concern for electronic devices. We introduce a variation-tolerant extension of the baseline many-core architecture. By means of micro-architectural knobs and a lightweight runtime control unit, the baseline architecture becomes dynamically tolerant to variations.
Resumo:
Sub-micron marine aerosol particles (PM1) were collected during the MERIAN cruise MSM 18/3 between 22 June 2011 and 21 July 2011 from the Cape Verde island Sao Vicente to Gabun crossing the tropical Atlantic Ocean and passing equatorial upwelling areas. According to air mass origin and chemical composition of the aerosol particles, three main regimes could be established. Aerosol particles in the first part of the cruise were mainly of marine origin, in the second part was marine and slightly biomass burning influenced (increasing tendency) and in the in last part of the cruise, approaching the African mainland, biomass burning influences became dominant. Generally aerosols were dominated by sulfate (caverage = 1.99 µg/m**3) and ammonium ions (caverage = 0.72 µg/m**3) that are well correlated and slightly increasing along the cruise. High concentrations of water insoluble organic carbon (WISOC) averaging 0.51 µg/m**3 were found probably attributed to the high oceanic productivity in this region. Water soluble organic carbon (WSOC) was strongly increasing along the cruise from concentrations of 0.26 µg/m**3 in the mainly marine influenced part to concentrations up to 3.3 µg/m**3 that are probably caused by biomass burning influences. Major organic constituents were oxalic acid, methansulfonic acid (MSA) and aliphatic amines. MSA concentrations were quite constant along the cruise (caverage = 43 ng/m**3). While aliphatic amines were more abundant in the first mainly marine influenced part with concentrations of about 20 ng/m**3, oxalic acid showed the opposite pattern with average concentrations of 12 ng/m**3 in the marine and 158 ng/m**3 in the biomass burning influenced part. The alpha dicarbonyl compounds glyoxal and methylglyoxal were detected in the aerosol particles in the low ng/m**3 range and followed oxalic acid closely. MSA and aliphatic amines accounted for biogenic marine (secondary) aerosol constituents whereas oxalic acid and the alpha dicarbonyl compounds were believed to result mainly from biomass burning. N-alkane concentrations increased along the cruise from 0.81 to 4.66 ng/m**3, PAHs and hopanes were abundant in the last part of the cruise (caverage of PAHs = 0.13 ng/m**3, caverage of hopanes = 0.19 ng/m**3). Levoglucosan was identified in several samples of the last part of the cruise in concentrations around 2 ng/m**3, pointing to (aged) biomass burning influences. The investigated organic compounds could explain 9.5% of WSOC in the mainly marine influenced part (dominating compounds: aliphatic amines and MSA) and 2.7% of WSOC in the biomass burning influenced part (dominating compound: oxalic acid) of the cruise.
Resumo:
The use of biomaterials to direct osteogenic differentiation of human mesenchymal stem cells (hMSCs) in the absence of osteogenic supplements is thought to be part of the next generation of orthopedic implants. We previously engineered surface-roughness gradients of average roughness (Ra) varying from the sub-micron to the micrometer range ( 0.5–4.7 lm), and mean distance between peaks (RSm) gradually varying from 214 lm to 33 lm. Here we have screened the ability of such surface-gradients of polycaprolactone to influence the expression of alkaline phosphatase (ALP), collagen type 1 (COL1) and mineralization by hMSCs cultured in dexamethasone (Dex)-deprived osteogenic induction medium (OIM) and in basal growth medium (BGM). Ra 1.53 lm/RSm 79 lm in Dex-deprived OI medium, and Ra 0.93 lm/RSm 135 lm in BGM consistently showed higher effectiveness at supporting the expression of the osteogenic markers ALP, COL1 and mineralization, compared to the tissue culture polystyrene (TCP) control in complete OIM. The superior effectiveness of specific surface-roughness revealed that this strategy may be used as a compelling alternative to soluble osteogenic inducers in orthopedic applications featuring the clinically relevant biodegradable polymer polycaprolactone.
Resumo:
In Tbilisi according to the data of the complex monitoring of light ions concentration, radon and sub-micron aerosols the effect of feedback of intensity of ionizing radiation with the light ions content in atmosphere is discovered.
Resumo:
წარმოდგენილია მონაცემები თბილისის ჰაერის მიწისპირა ფენაში 2010-2011 წწ. 0.1 მკმ-ზე მეტი ზომის სუბმიკრონული აეროზოლების თვლადი კონცენტრაციის შესახებ.შესწავლილია ატმოსფეროში აეროზოლების კონცენტრაციის თვიური და დღიური სვლა. აგებულია აეროზოლების კონცენტრაციის განაწილების ფუნქცია წლის სხვადასხვა სეზონისათვის.
Resumo:
Focused ion beam milling is a processing technology which allows flexible direct writing of nanometer scale features efficiently substituting electron beam lithography. No mask need results in ability for patterns writing even on fragile micromechanical devices. In this work we studied the abilities of the tool for fabrication of diffraction grating couplers in silicon nitride waveguides. The gratings were fabricated on a chip with extra fragile cantilevers of sub micron thickness. Optical characterization of the couplers was done using excitation of the waveguides in visible range by focused Gaussian beams of different waist sizes. Influence of Ga+ implantation on the device performance was studied.
Resumo:
The singular properties of hydrogenated amorphous carbon (a-C:H) thin filmsdeposited by pulsed DC plasma enhanced chemical vapor deposition (PECVD), such as hardness and wear resistance, make it suitable as protective coating with low surface energy for self-assembly applications. In this paper, we designed fluorine-containing a-C:H (a-C:H:F) nanostructured surfaces and we characterized them for self-assembly applications. Sub-micron patterns were generated on silicon through laser lithography while contact angle measurements, nanotribometer, atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to characterize the surface. a-C:H:F properties on lithographied surfaces such as hydrophobicity and friction were improved with the proper relative quantity of CH4 and CHF3 during deposition, resulting in ultrahydrophobic samples and low friction coefficients. Furthermore, these properties were enhanced along the direction of the lithographypatterns (in-plane anisotropy). Finally, self-assembly properties were tested with silicananoparticles, which were successfully assembled in linear arrays following the generated patterns. Among the main applications, these surfaces could be suitable as particle filter selector and cell colony substrate.
Resumo:
Thermal decomposition of [Bu4N]2[Zn(imnt)2] and [M(NH3)2(imnt)] complexes with M = Zn and Cd, and imnt = (bis 1,1-dicyanoethylene-2,2 dithiolate) in inert atmosphere was investigated by thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). Pyrolysis studies at different temperatures, 300, 400, 500, and 600 ºC, in N2 atmosphere were performed and the products were characterized by X-ray diffraction (XRD), infrared and Raman spectroscopy, and scanning electron microscopy (SEM). The products were identified as sulfide sub-micron particles, along with amorphous carbon. Particle sizes estimated by SEM were ca. 50 nm for the cationic complexes and 500 nm for the neutral complexes.