930 resultados para structured populations
Resumo:
Motivated by the modelling of structured parasite populations in aquaculture we consider a class of physiologically structured population models, where individuals may be recruited into the population at different sizes in general. That is, we consider a size-structured population model with distributed states-at-birth. The mathematical model which describes the evolution of such a population is a first order nonlinear partial integro-differential equation of hyperbolic type. First, we use positive perturbation arguments and utilise results from the spectral theory of semigroups to establish conditions for the existence of a positive equilibrium solution of our model. Then we formulate conditions that guarantee that the linearised system is governed by a positive quasicontraction semigroup on the biologically relevant state space. We also show that the governing linear semigroup is eventually compact, hence growth properties of the semigroup are determined by the spectrum of its generator. In case of a separable fertility function we deduce a characteristic equation and investigate the stability of equilibrium solutions in the general case using positive perturbation arguments.
Resumo:
The neutral rate of allelic substitution is analyzed for a class-structured population subject to a stationary stochastic demographic process. The substitution rate is shown to be generally equal to the effective mutation rate, and under overlapping generations it can be expressed as the effective mutation rate in newborns when measured in units of average generation time. With uniform mutation rate across classes the substitution rate reduces to the mutation rate.
Resumo:
Neutrality tests in quantitative genetics provide a statistical framework for the detection of selection on polygenic traits in wild populations. However, the existing method based on comparisons of divergence at neutral markers and quantitative traits (Q(st)-F(st)) suffers from several limitations that hinder a clear interpretation of the results with typical empirical designs. In this article, we propose a multivariate extension of this neutrality test based on empirical estimates of the among-populations (D) and within-populations (G) covariance matrices by MANOVA. A simple pattern is expected under neutrality: D = 2F(st)/(1 - F(st))G, so that neutrality implies both proportionality of the two matrices and a specific value of the proportionality coefficient. This pattern is tested using Flury's framework for matrix comparison [common principal-component (CPC) analysis], a well-known tool in G matrix evolution studies. We show the importance of using a Bartlett adjustment of the test for the small sample sizes typically found in empirical studies. We propose a dual test: (i) that the proportionality coefficient is not different from its neutral expectation [2F(st)/(1 - F(st))] and (ii) that the MANOVA estimates of mean square matrices between and among populations are proportional. These two tests combined provide a more stringent test for neutrality than the classic Q(st)-F(st) comparison and avoid several statistical problems. Extensive simulations of realistic empirical designs suggest that these tests correctly detect the expected pattern under neutrality and have enough power to efficiently detect mild to strong selection (homogeneous, heterogeneous, or mixed) when it is occurring on a set of traits. This method also provides a rigorous and quantitative framework for disentangling the effects of different selection regimes and of drift on the evolution of the G matrix. We discuss practical requirements for the proper application of our test in empirical studies and potential extensions.
Resumo:
Animals can often coordinate their actions to achieve mutually beneficial outcomes. However, this can result in a social dilemma when uncertainty about the behavior of partners creates multiple fitness peaks. Strategies that minimize risk ("risk dominant") instead of maximizing reward ("payoff dominant") are favored in economic models when individuals learn behaviors that increase their payoffs. Specifically, such strategies are shown to be "stochastically stable" (a refinement of evolutionary stability). Here, we extend the notion of stochastic stability to biological models of continuous phenotypes at a mutation-selection-drift balance. This allows us to make a unique prediction for long-term evolution in games with multiple equilibria. We show how genetic relatedness due to limited dispersal and scaled to account for local competition can crucially affect the stochastically-stable outcome of coordination games. We find that positive relatedness (weak local competition) increases the chance the payoff dominant strategy is stochastically stable, even when it is not risk dominant. Conversely, negative relatedness (strong local competition) increases the chance that strategies evolve that are neither payoff nor risk dominant. Extending our results to large multiplayer coordination games we find that negative relatedness can create competition so extreme that the game effectively changes to a hawk-dove game and a stochastically stable polymorphism between the alternative strategies evolves. These results demonstrate the usefulness of stochastic stability in characterizing long-term evolution of continuous phenotypes: the outcomes of multiplayer games can be reduced to the generic equilibria of two-player games and the effect of spatial structure can be analyzed readily.
Resumo:
Cet article est un compte-rendu du colloque "Evolution in Structured Population", tenu du 14 au 16 Septembre 1994 à l'Université de Lausanne. Consacré aux causes écologiques et conséquences évolutives d'horizons divers (zoologie, botanique, anthropologie, mathématiques), utilisant des approches variées, aussi bien empiriques que théoriques. Plusieurs exemples concrets de structurations génétiques de populations naturelles ont été documentés, et leurs causes analysées. Celles-ci sont variées, certaines étant extrinsèques à la biologie des espèces concernées (distances géographique, barrières écologiques, etc), d'autres intrinsèques (stratégies de reproduction, mutations chromosomiques). Les outils quantitatifs les plus largement utilisés pour analyser ces structures restent les F-statistiques de Whright; elles ont néanmoins fait l'objet de plusieurs critiques: d'une part, elles n'exploitent pas toute l'information disponible (certains orateurs ont d'ailleurs proposé diverses améliorations dans ce sens); d'autre part, les hypothèses qui sous-tendent leur interprétation conventionelle (en particulier l'hypothèse de populations à l'équilibre) sont régulièrement violées. Plusieurs des travaux présentés se sont précisément intéressés aux situations de déséquilibre et à leurs conséquences sur la dynamique et l'évolution des populations. Parmi celles ci: l'effet d'extinctions démiques sur les stratégies de dispersion des organismes et la structure génétique de leurs métapopulations, l'inadéquation du modèle classique de métapopulation, dit modèle en île (les modèles de diffusion ou de "pas japonais" (stepping stone) semblent généralement préférables), et le rôle de la "viscosité" des populations, en particulier en relation avec la sélection de parentèle et l'évolution de structures sociales. Le rôle important d'événements historiques sur les structures actuelles a été souligné, notamment dans le cadre de contacts secondaires entre populations hautement différenciées, leur introgression possible et la biogéographie de taxons vicariants. Parmi les problèmes récurrents notés: l'identification de l'unité panmictique, l'échelle de mesure spatiale appropriée, et les difficulté d'estimation des taux de migration et de flux de gènes. Plusieurs auteurs ont relevé la nécessité d'études biologiques de détail: les structures génétiques n'ont d'intérêt que dans la mesure où elles peuvent être situées dans un contexte écologique et évolutif précis. Ce point a été largement illustré dans le cadre des realtions entre structures génétiques et stratégies de reproduction/dispersion.
Resumo:
When individuals in a population can acquire traits through learning, each individual may express a certain number of distinct cultural traits. These traits may have been either invented by the individual himself or acquired from others in the population. Here, we develop a game theoretic model for the accumulation of cultural traits through individual and social learning. We explore how the rates of innovation, decay, and transmission of cultural traits affect the evolutionary stable (ES) levels of individual and social learning and the number of cultural traits expressed by an individual when cultural dynamics are at a steady-state. We explore the evolution of these phenotypes in both panmictic and structured population settings. Our results suggest that in panmictic populations, the ES level of learning and number of traits tend to be independent of the social transmission rate of cultural traits and is mainly affected by the innovation and decay rates. By contrast, in structured populations, where interactions occur between relatives, the ES level of learning and the number of traits per individual can be increased (relative to the panmictic case) and may then markedly depend on the transmission rate of cultural traits. This suggests that kin selection may be one additional solution to Rogers's paradox of nonadaptive culture.
Resumo:
Adaptive dynamics shows that a continuous trait under frequency dependent selection may first converge to a singular point followed by spontaneous transition from a unimodal trait distribution into a bimodal one, which is called "evolutionary branching". Here, we study evolutionary branching in a deme-structured population by constructing a quantitative genetic model for the trait variance dynamics, which allows us to obtain an analytic condition for evolutionary branching. This is first shown to agree with previous conditions for branching expressed in terms of relatedness between interacting individuals within demes and obtained from mutant-resident systems. We then show this branching condition can be markedly simplified when the evolving trait affect fecundity and/or survival, as opposed to affecting population structure, which would occur in the case of the evolution of dispersal. As an application of our model, we evaluate the threshold migration rate below which evolutionary branching cannot occur in a pairwise interaction game. This agrees very well with the individual-based simulation results.
Resumo:
A recent study suggests that sex-specific dispersal rates can be quantitatively estimated on the basis of sex- and state-specific (pre- vs. postdispersal) F-statistics. In the present paper, we extend this approach to account for the hierarchical structure of natural populations, and we validate it through individual-based simulations. The model is applied to an empirical data set consisting of 536 individuals (males, females, and predispersal juveniles) of greater white-toothed shrews (Crocidura russula), sampled according to a hierarchical design and typed for seven autosomal microsatellite loci. From this dataset, dispersal is significantly female biased at the local scale (breeding-group level), but not at the larger scale (among local populations). We argue that selective pressures on dispersal are likely to depend on the spatial scale considered, and that short-distance dispersal should mainly respond to kin interactions (inbreeding or kin competition avoidance), which exert differential pressure on males and females.
On the evolution of harming and recognition in finite panmictic and infinite structured populations.
Resumo:
Natural selection may favor two very different types of social behaviors that have costs in vital rates (fecundity and/or survival) to the actor: helping behaviors, which increase the vital rates of recipients, and harming behaviors, which reduce the vital rates of recipients. Although social evolutionary theory has mainly dealt with helping behaviors, competition for limited resources creates ecological conditions in which an actor may benefit from expressing behaviors that reduce the vital rates of neighbors. This may occur if the reduction in vital rates decreases the intensity of competition experienced by the actor or that experienced by its offspring. Here, we explore the joint evolution of neutral recognition markers and marker-based costly conditional harming whereby actors express harming, conditional on actor and recipient bearing different conspicuous markers. We do so for two complementary demographic scenarios: finite panmictic and infinite structured populations. We find that marker-based conditional harming can evolve under a large range of recombination rates and group sizes under both finite panmictic and infinite structured populations. A direct comparison with results for the evolution of marker-based conditional helping reveals that, if everything else is equal, marker-based conditional harming is often more likely to evolve than marker-based conditional helping.
Resumo:
Many models proposed to study the evolution of collective action rely on a formalism that represents social interactions as n-player games between individuals adopting discrete actions such as cooperate and defect. Despite the importance of spatial structure in biological collective action, the analysis of n-player games games in spatially structured populations has so far proved elusive. We address this problem by considering mixed strategies and by integrating discrete-action n-player games into the direct fitness approach of social evolution theory. This allows to conveniently identify convergence stable strategies and to capture the effect of population structure by a single structure coefficient, namely, the pairwise (scaled) relatedness among interacting individuals. As an application, we use our mathematical framework to investigate collective action problems associated with the provision of three different kinds of collective goods, paradigmatic of a vast array of helping traits in nature: "public goods" (both providers and shirkers can use the good, e.g., alarm calls), "club goods" (only providers can use the good, e.g., participation in collective hunting), and "charity goods" (only shirkers can use the good, e.g., altruistic sacrifice). We show that relatedness promotes the evolution of collective action in different ways depending on the kind of collective good and its economies of scale. Our findings highlight the importance of explicitly accounting for relatedness, the kind of collective good, and the economies of scale in theoretical and empirical studies of the evolution of collective action.
Resumo:
Variability in population growth rate is thought to have negative consequences for organism fitness. Theory for matrix population models predicts that variance in population growth rate should be the sum of the variance in each matrix entry times the squared sensitivity term for that matrix entry. I analyzed the stage-specific demography of 30 field populations from 17 published studies for pattern between the variance of a demographic term and its contribution to population growth. There were no instances in which a matrix entry both was highly variable and had a large effect on population growth rate; instead, correlations between estimates of temporal variance in a term and contribution to population growth (sensitivity or elasticity) were overwhelmingly negative. In addition, survivorship or growth sensitivities or elasticities always exceeded those of fecundity, implying that the former two terms always contributed more to population growth rate. These results suggest that variable life history stages tend to contribute relatively little to population growth rates because natural selection may alter life histories to minimize stages with both high sensitivity and high variation.
Resumo:
It has long been recognized that demographic structure within a population can significantly affect the likely outcomes of harvest. Many studies have focussed on equilibrium dynamics and maximization of the value of the harvest taken. However, in some cases the management objective is to maintain the population at a abundance that is significantly below the carrying capacity. Achieving such an objective by harvest can be complicated by the presence of significant structure (age or stage) in the target population. in such cases, optimal harvest strategies must account for differences among age- or stage-classes of individuals in their relative contribution to the demography of the population. In addition, structured populations are also characterized by transient non-linear dynamics following perturbation, such that even under an equilibrium harvest, the population may exhibit significant momentum, increasing or decreasing before cessation of growth. Using simple linear time-invariant models, we show that if harvest levels are set dynamically (e.g., annually) then transient effects can be as or more important than equilibrium outcomes. We show that appropriate harvest rates can be complicated by uncertainty about the demographic structure of the population, or limited control over the structure of the harvest taken. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In a series of seminal articles in 1974, 1975, and 1977, J. H. Gillespie challenged the notion that the "fittest" individuals are those that produce on average the highest number of offspring. He showed that in small populations, the variance in fecundity can determine fitness as much as mean fecundity. One likely reason why Gillespie's concept of within-generation bet hedging has been largely ignored is the general consensus that natural populations are of large size. As a consequence, essentially no work has investigated the role of the fecundity variance on the evolutionary stable state of life-history strategies. While typically large, natural populations also tend to be subdivided in local demes connected by migration. Here, we integrate Gillespie's measure of selection for within-generation bet hedging into the inclusive fitness and game theoretic measure of selection for structured populations. The resulting framework demonstrates that selection against high variance in offspring number is a potent force in large, but structured populations. More generally, the results highlight that variance in offspring number will directly affect various life-history strategies, especially those involving kin interaction. The selective pressures on three key traits are directly investigated here, namely within-generation bet hedging, helping behaviors, and the evolutionary stable dispersal rate. The evolutionary dynamics of all three traits are markedly affected by variance in offspring number, although to a different extent and under different demographic conditions.