997 resultados para structured parallel computations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe an approach aimed at addressing the issue of joint exploitation of control (stream) and data parallelism in a skeleton based parallel programming environment, based on annotations and refactoring. Annotations drive efficient implementation of a parallel computation. Refactoring is used to transform the associated skeleton tree into a more efficient, functionally equivalent skeleton tree. In most cases, cost models are used to drive the refactoring process. We show how sample use case applications/kernels may be optimized and discuss preliminary experiments with FastFlow assessing the theoretical results. © 2013 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we introduce an analytical technique based on queueing networks and Petri nets for making a performance analysis of dataflow computations when executed on the Manchester machine. This technique is also applicable for the analysis of parallel computations on multiprocessors. We characterize the parallelism in dataflow computations through a four-parameter characterization, namely, the minimum parallelism, the maximum parallelism, the average parallelism and the variance in parallelism. We observe through detailed investigation of our analytical models that the average parallelism is a good characterization of the dataflow computations only as long as the variance in parallelism is small. However, significant difference in performance measures will result when the variance in parallelism is comparable to or higher than the average parallelism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structured parallel programming, and in particular programming models using the algorithmic skeleton or parallel design pattern concepts, are increasingly considered to be the only viable means of supporting effective development of scalable and efficient parallel programs. Structured parallel programming models have been assessed in a number of works in the context of performance. In this paper we consider how the use of structured parallel programming models allows knowledge of the parallel patterns present to be harnessed to address both performance and energy consumption. We consider different features of structured parallel programming that may be leveraged to impact the performance/energy trade-off and we discuss a preliminary set of experiments validating our claims.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When implementing autonomic management of multiple non-functional concerns a trade-off must be found between the ability to develop independently management of the individual concerns (following the separation of concerns principle) and the detection and resolution of conflicts that may arise when combining the independently developed management code. Here we discuss strategies to establish this trade-off and introduce a model checking based methodology aimed at simplifying the discovery and handling of conflicts arising from deployment-within the same parallel application-of independently developed management policies. Preliminary results are shown demonstrating the feasibility of the approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a methodology for optimizing the execution of data parallel (sub-)tasks on CPU and GPU cores of the same heterogeneous architecture. The methodology is based on two main components: i) an analytical performance model for scheduling tasks among CPU and GPU cores, such that the global execution time of the overall data parallel pattern is optimized; and ii) an autonomic module which uses the analytical performance model to implement the data parallel computations in a completely autonomic way, requiring no programmer intervention to optimize the computation across CPU and GPU cores. The analytical performance model uses a small set of simple parameters to devise a partitioning-between CPU and GPU cores-of the tasks derived from structured data parallel patterns/algorithmic skeletons. The model takes into account both hardware related and application dependent parameters. It computes the percentage of tasks to be executed on CPU and GPU cores such that both kinds of cores are exploited and performance figures are optimized. The autonomic module, implemented in FastFlow, executes a generic map (reduce) data parallel pattern scheduling part of the tasks to the GPU and part to CPU cores so as to achieve optimal execution time. Experimental results on state-of-the-art CPU/GPU architectures are shown that assess both performance model properties and autonomic module effectiveness. © 2013 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For communication-intensive parallel applications, the maximum degree of concurrency achievable is limited by the communication throughput made available by the network. In previous work [HPS94], we showed experimentally that the performance of certain parallel applications running on a workstation network can be improved significantly if a congestion control protocol is used to enhance network performance. In this paper, we characterize and analyze the communication requirements of a large class of supercomputing applications that fall under the category of fixed-point problems, amenable to solution by parallel iterative methods. This results in a set of interface and architectural features sufficient for the efficient implementation of the applications over a large-scale distributed system. In particular, we propose a direct link between the application and network layer, supporting congestion control actions at both ends. This in turn enhances the system's responsiveness to network congestion, improving performance. Measurements are given showing the efficacy of our scheme to support large-scale parallel computations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Data flow techniques have been around since the early '70s when they were used in compilers for sequential languages. Shortly after their introduction they were also consideredas a possible model for parallel computing, although the impact here was limited. Recently, however, data flow has been identified as a candidate for efficient implementation of various programming models on multi-core architectures. In most cases, however, the burden of determining data flow "macro" instructions is left to the programmer, while the compiler/run time system manages only the efficient scheduling of these instructions. We discuss a structured parallel programming approach supporting automatic compilation of programs to macro data flow and we show experimental results demonstrating the feasibility of the approach and the efficiency of the resulting "object" code on different classes of state-of-the-art multi-core architectures. The experimental results use different base mechanisms to implement the macro data flow run time support, from plain pthreads with condition variables to more modern and effective lock- and fence-free parallel frameworks. Experimental results comparing efficiency of the proposed approach with those achieved using other, more classical, parallel frameworks are also presented. © 2012 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The management of non-functional features (performance, security, power management, etc.) is traditionally a difficult, error prone task for programmers of parallel applications. To take care of these non-functional features, autonomic managers running policies represented as rules using sensors and actuators to monitor and transform a running parallel application may be used. We discuss an approach aimed at providing formal tool support to the integration of independently developed autonomic managers taking care of different non-functional concerns within the same parallel application. Our approach builds on the Behavioural Skeleton experience (autonomic management of non-functional features in structured parallel applications) and on previous results on conflict detection and resolution in rule-based systems. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Structured parallel programming is recognised as a viable and effective means of tackling parallel programming problems. Recently, a set of simple and powerful parallel building blocks RISC pb2l) has been proposed to support modelling and implementation of parallel frameworks. In this work we demonstrate how that same parallel building block set may be used to model both general purpose parallel programming abstractions, not usually listed in classical skeleton sets, and more specialized domain specific parallel patterns. We show how an implementation of RISC pb2 l can be realised via the FastFlow framework and present experimental evidence of the feasibility and efficiency of the approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work we show how automatic relative debugging can be used to find differences in computation between a correct serial program and an OpenMP parallel version of that program that does not yield correct results. Backtracking and re-execution are used to determine the first OpenMP parallel region that produces a difference in computation that may lead to an incorrect value the user has indicated. Our approach also lends itself to finding differences between parallel computations, where executing with M threads produces expected results but an N thread execution does not (M, N > 1, M ≠ N). OpenMP programs created using a parallelization tool are addressed by utilizing static analysis and directive information from the tool. Hand-parallelized programs, where OpenMP directives are inserted by the user, are addressed by performing data dependence and directive analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a data flow based run time system as an efficient tool for supporting execution of parallel code on heterogeneous architectures hosting both multicore CPUs and GPUs. We discuss how the proposed run time system may be the target of both structured parallel applications developed using algorithmic skeletons/parallel design patterns and also more "domain specific" programming models. Experimental results demonstrating the feasibility of the approach are presented. © 2012 World Scientific Publishing Company.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

FastFlow is a structured parallel programming framework targeting shared memory multi-core architectures. In this paper we introduce a FastFlow extension aimed at supporting also a network of multi-core workstations. The extension supports the execution of FastFlow programs by coordinating-in a structured way-the fine grain parallel activities running on a single workstation. We discuss the design and the implementation of this extension presenting preliminary experimental results validating it on state-of-the-art networked multi-core nodes. © 2013 Springer-Verlag.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The motion instability is an important issue that occurs during the operation of towed underwater vehicles (TUV), which considerably affects the accuracy of high precision acoustic instrumentations housed inside the same. Out of the various parameters responsible for this, the disturbances from the tow-ship are the most significant one. The present study focus on the motion dynamics of an underwater towing system with ship induced disturbances as the input. The study focus on an innovative system called two-part towing. The methodology involves numerical modeling of the tow system, which consists of modeling of the tow-cables and vehicles formulation. Previous study in this direction used a segmental approach for the modeling of the cable. Even though, the model was successful in predicting the heave response of the tow-body, instabilities were observed in the numerical solution. The present study devises a simple approach called lumped mass spring model (LMSM) for the cable formulation. In this work, the traditional LMSM has been modified in two ways. First, by implementing advanced time integration procedures and secondly, use of a modified beam model which uses only translational degrees of freedoms for solving beam equation. A number of time integration procedures, such as Euler, Houbolt, Newmark and HHT-α were implemented in the traditional LMSM and the strength and weakness of each scheme were numerically estimated. In most of the previous studies, hydrodynamic forces acting on the tow-system such as drag and lift etc. are approximated as analytical expression of velocities. This approach restricts these models to use simple cylindrical shaped towed bodies and may not be applicable modern tow systems which are diversed in shape and complexity. Hence, this particular study, hydrodynamic parameters such as drag and lift of the tow-system are estimated using CFD techniques. To achieve this, a RANS based CFD code has been developed. Further, a new convection interpolation scheme for CFD simulation, called BNCUS, which is blend of cell based and node based formulation, was proposed in the study and numerically tested. To account for the fact that simulation takes considerable time in solving fluid dynamic equations, a dedicated parallel computing setup has been developed. Two types of computational parallelisms are explored in the current study, viz; the model for shared memory processors and distributed memory processors. In the present study, shared memory model was used for structural dynamic analysis of towing system, distributed memory one was devised in solving fluid dynamic equations.