993 resultados para strong fields


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The fast electron propagation in an inverse cone target is investigated computationally and experimentally. Two-dimensional particle-in-cell simulation shows that fast electrons with substantial numbers are generated at the outer tip of an inverse cone target irradiated by a short intense laser pulse. These electrons are guided and confined to propagate along the inverse cone wall, forming a large surface current. The propagation induces strong transient electric and magnetic fields which guide and confine the surface electron current. The experiment qualitatively verifies the guiding and confinement of the strong electron current in the wall surface. The large surface current and induced strong fields are of importance for fast ignition related researches.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Various authors have suggested that the gamma-ray burst (GRB) central engine is a rapidly rotating, strongly magnetized, (similar to 10(15)-10(16) G) compact object. The strong magnetic field can accelerate and collimate the relativistic flow and the rotation of the compact object can be the energy source of the GRB. The major problem in this scenario is the difficulty of finding an astrophysical mechanism for obtaining such intense fields. Whereas, in principle, a neutron star could maintain such strong fields, it is difficult to justify a scenario for their creation. If the compact object is a black hole, the problem is more difficult since, according to general relativity it has ""no hair"" (i.e., no magnetic field). Schuster, Blackett, Pauli, and others have suggested that a rotating neutral body can create a magnetic field by non-minimal gravitational-electromagnetic coupling (NMGEC). The Schuster-Blackett form of NMGEC was obtained from the Mikhail and Wanas`s tetrad theory of gravitation (MW). We call the general theory NMGEC-MW. We investigate here the possible origin of the intense magnetic fields similar to 10(15)-10(16) G in GRBs by NMGEC-MW. Whereas these fields are difficult to explain astrophysically, we find that they are easily explained by NMGEC-MW. It not only explains the origin of the similar to 10(15)-10(16) G fields when the compact object is a neutron star, but also when it is a black hole.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The viability of using beams of molecular ions as a target for strong field fragmentation studies using intense ultra-short laser pulses is demonstrated. In this way the production mechanism for multiply charged ions in strong fields may be elucidated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We discuss consistency of the concept of external background in QFT. Different restrictions on magnitude of magnetic and electric fields are analyzed. The back reaction due to strong electric field is calculated and restrictions on the magnitude and duration of such a field are obtained. The problem of consistency of Dirac equation with a superstrong Coulomb field is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die theoretische und experimentelle Untersuchung von wasserstoffähnlichen Systemen hat in den letzten hundert Jahren immer wieder sowohl die experimentelle als auch die theoretische Physik entscheidend vorangebracht. Formulierung und Test der Quantenelektrodynamik (QED) standen und stehen in engen Zusammenhang mit der Untersuchung wasserstoffähnlicher Systeme. Gegenwärtig sind besonders wasserstoffähnliche Systeme schwerer Ionen von Interesse, um die QED in den extrem starken Feldern in Kernnähe zu testen. Laserspektroskopische Messungen der Hyperfeinstrukturaufspaltung des Grundzustandes bieten eine hohe Genauigkeit, ihre Interpretation wird jedoch durch die Unsicherheit in der Größe der Kernstruktureffekte erschwert. Beseitigt werden können diese durch die Kombination der Aufspaltung in wasserstoff- und lithiumähnlichen Ionen des gleichen Nuklids. In den letzten zwei Jahrzehnten scheiterten mehrere dadurch motivierte Versuche, den HFS-Übergang in lithiumähnlichen 209Bi80+ zu finden. Im Rahmen dieser Arbeit wurde kollineare Laserspektroskopie bei etwa 70% der Lichtgeschwindigkeit an 209Bi82+ und 209Bi80+ -Ionen im Experimentier- Speicherring an der GSI in Darmstadt durchgeführt. Dabei wurde der Übergang im lithiumähnlichen Bismut erstmals beobachtet und dessen Übergangswellenlänge zu 1554,74(74) nm bestimmt. Ein eigens für dieses Experiment optimiertes Fluoreszenz-Nachweissystem stellte dabei die entscheidende Verbesserung gegenüber den gescheiterten Vorgängerexperimenten dar. Der Wellenlängenfehler ist dominiert von der Unsicherheit der Ionengeschwindigkeit, die für die Transformation in das Ruhesystem der Ionen entscheidend ist. Für deren Bestimmung wurden drei Ansätze verfolgt: Die Geschwindigkeit wurde aus der Elektronenkühlerspannung bestimmt, aus dem Produkt von Orbitlänge und Umlauffrequenz und aus dem relativistischen Dopplereffekt unter Annahme der Korrektheit des früher bestimmten Überganges in wasserstoffähnlichen Bismut. Die Spannungskalibration des Elektronenkühlers wurde im Rahmen dieser Arbeit erstmals kritisch evaluiert und bislang unterschätzte systematische Unsicherheiten aufgezeigt, die derzeit einen aussagekräftigen QED-Test verhindern. Umgekehrt konnte unter Verwendung der QED-Berechnungen eine Ionengeschwindigkeit berechnet werden, die ein genaueres und konsistenteres Resultat für die Übergangswellenlängen beider Ionenspezies liefert. Daraus ergibt sich eine Diskrepanz zu dem früher bestimmten Wert des Überganges in wasserstoffähnlichen Bismut, die es weiter zu untersuchen gilt.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ionization rate of molecules in intense laser fields may be much lower than that of atoms with similar binding energy. This phenomenon is termed the ionization suppression of molecules and is caused by the molecular inner structure. In this paper, we perform a comprehensive study of the ionization suppression of homonuclear diatomic molecules in intense laser fields of linear and circular polarizations. We find that for linear polarization the total ionization rate and the ionization suppression depend greatly on the molecular alignment, and that for circular polarization the ionization suppression of molecules in the antibonding (bonding) shells disappears (appears) for laser intensities around 10(15) W/cm(2). We also find that the molecular photoelectron energy spectra are greatly changed by the interference effect, even though the total ionization rate of molecules remains almost the same as that of their companion atoms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We apply a scattering theory of nonperturbative quantum electrodynamics to study the photoelectron angular distributions (PADs) of a hydrogen atom irradiated by linearly polarized laser light. The calculated PADs show main lobes and jetlike structure. Previous experimental studies reveal that in a set of above-threshold-ionization peaks when the absorbed-photon number increases by one, the jet number also increases by one. Our study confirms this experimental observation. Our calculations further predict that in some cases three more jets may appear with just one-more-photon absorption. With consideration of laser-frequency change, one less jet may also appear with one-more-photon absorption. The jetlike structure of PADs is due to the maxima of generalized phased Bessel functions, not an indication of the quantum number of photoelectron angular momentum states.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An analytical fluid model is proposed for the generation of strong quasistatic magnetic fields during normal incidence of a short ultraintense Gaussian laser pulse with a finite spot size on an overdense plasma. The steepening of the electron density profile in the originally homogeneous overdense plasma and the formation of electron cavitation as the electrons are pushed inward by the laser are included self-consistently. It is shown that the appearance of the cavitation plays an important role in the generation of quasistatic magnetic fields: the strong plasma inhomogeneities caused by the formation of the electron cavitation lead to the generation of a strong axial quasistatic magnetic field B-z. In the overdense regime, the generated quasistatic magnetic field increases with increasing laser intensity, while it decreases with increasing plasma density. It is also found that, in a moderately overdense plasma, highly intense laser pulses can generate magnetic fields similar to 100 MG and greater due to the transverse linear mode conversion process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electron cyclotron resonance CR) measurements have been carried out in magnetic fields up to 32 T to study electron-phonon interaction in two heavily modulation-delta -doped GaAs/Al0.3Ga0.7As single-quantum-well samples. No measurable resonant magnetopolaron effects were observed in either sample in the region of the GaAs longitudinal optical (LO) phonons. However, when the CR frequency is above LO phonon frequency, omega (LO)=E-LO/(h) over bar, at high magnetic fields (B>27 T), electron CR exhibits a strong avoided-level-crossing splitting for both samples at frequencies close to (omega (LO)+ (E-2-E-1)1 (h) over bar, where E-2, and E-1 are the energies of the bottoms of the second and the first subbands, respectively. The energy separation between the two branches is large with the minimum separation of 40 cm(-1) occurring at around 30.5 T. A detailed theoretical analysis, which includes a self-consistent calculation of the band structure and the effects of electron-phonon interaction on the CR, shows that this type of splitting is due to a three-level resonance between the second Landau level of the first electron subband and the lowest Landau level of the second subband plus one GaAs LO phonon. The absence of occupation effects in the final states and weak screening or this three-level process yields large energy separation even in the presence of high electron densities. Excellent agreement between the theory and the experimental results is obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electron cyclotron resonance (CR) has been studied in magnetic fields up to 32 T in two heavily modulation-delta-doped GaAs/Al0.3Ga0.7As single quantum well samples. Little effect on electron CR is observed in either sample in the region of resonance with the GaAs LO phonons. However, above the LO-phonon frequency energy E-LO at B > 27 T, electron CR exhibits a strong avoided-level-crossing splitting for both samples at energies close to E-LO + (E-2 - E-1), where E-2, and E-1 are the energies of the bottoms of the second and the first subbands, respectively. The energy separation between the two branches is large, reaching a minimum of about 40 cm(-1) around 30.5 T for both samples. This splitting is due to a three-level resonance between the second LI, of the first electron subband and the lowest LL of the second subband plus an LO phonon. The large splitting in the presence: of high electron densities is due to the absence of occupation (Pauli-principle) effects in the final states and weak screening for this three-level process. (C) 2000 Published by Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The magnetoexcitonic optical absorption of a GaAs bulk semiconductor driven by a terahertz (THz) field is investigated numerically. The method of the solution of the initial-value problem, in combination with the perfect matched layer technique, is used to calculate the optical susceptibility, with Coulomb interaction, Landau quantization, and THz fields involved nonperturbatively. It shows that there appear replicas and sidebands of magnetoexciton of different Landau levels, which greatly enrich the magneto-optical spectrum in the presence of a driving THz field. Copyright (C) EPLA, 2008.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate the difference in the angular distribution of Ly-alpha(1) and K alpha(1) photons from hydrogenlike and heliumlike ions of uranium after radiative electron capture to the L shell. The strong anisotropy in the former case is changed to a very small one in the latter case. Our calculations support the observation. The effect takes place even in the limiting case of noninteracting electrons, being caused by the Pauli principle.