948 resultados para strip cropping
Resumo:
When the white men first explored Nebraska, they found little erosion taking place. They found the hills, particularly in eastern Nebraska, covered with a dense growth of grass, underlain with a thick mat of decaying debris. The valleys were even more densely covered with the water-loving grasses and sedges. The soil underneath the prairie was black and spongy, the result of centuries of accumulating humus. The valleys bordering the streams were boggy and abounded with springs. Clear water flowed constantly in the streams. The upland draws in the more favorable parts of the state were heavily covered with the big bluestem and slough grass. Springs occurred in many of these. Soil erosion in Nebraska has not progressed to as great an extent as in states to the east and to the south. This is because of the comparatively lower rainfall in Nebraska, because the land has been farmed for fewer years in this state, and because some Nebraska soils are comparatively less erosive. This extension circular covers factors which influence erosion, erosion control practices, and storage of soil moisture.
Resumo:
When the white men first explored Nebraska, they found little erosion taking place. They found the hills, particularly in eastern Nebraska, covered with a dense growth of grass, underlain with a thick mat of decaying debris. The valleys were even more densely covered with the water-loving grasses and sedges. The soil underneath and prairie was black and soggy, the result of centuries of accumulating humus. The valleys bordernig the streams were boggy and abounded with springs. Clear water flowed constantly in the streams. The upland draws in the more favorable parts of the state were heavily covered with the big bluesteam and slough grass. Springs occurred in many of these. Soil erosion in Nebraska has not progressed to as great an extent as in states to the east and to the south. This is because of the comparatively lower rainfall in Nebraska, because the land has been farmed for fewer years in this state, and because some Nebraska soils are comparatively less erosive. This extension circular covers the factors which influence erosion, erosion control practices and storage of soil moisture.
Resumo:
Nonpoint sources (NPS) pollution from agriculture is the leading source of water quality impairment in U.S. rivers and streams, and a major contributor to lakes, wetlands, estuaries and coastal waters (U.S. EPA 2016). Using data from a survey of farmers in Maryland, this dissertation examines the effects of a cost sharing policy designed to encourage adoption of conservation practices that reduce NPS pollution in the Chesapeake Bay watershed. This watershed is the site of the largest Total Maximum Daily Load (TMDL) implemented to date, making it an important setting in the U.S. for water quality policy. I study two main questions related to the reduction of NPS pollution from agriculture. First, I examine the issue of additionality of cost sharing payments by estimating the direct effect of cover crop cost sharing on the acres of cover crops, and the indirect effect of cover crop cost sharing on the acres of two other practices: conservation tillage and contour/strip cropping. A two-stage simultaneous equation approach is used to correct for voluntary self-selection into cost sharing programs and account for substitution effects among conservation practices. Quasi-random Halton sequences are employed to solve the system of equations for conservation practice acreage and to minimize the computational burden involved. By considering patterns of agronomic complementarity or substitution among conservation practices (Blum et al., 1997; USDA SARE, 2012), this analysis estimates water quality impacts of the crowding-in or crowding-out of private investment in conservation due to public incentive payments. Second, I connect the econometric behavioral results with model parameters from the EPA’s Chesapeake Bay Program to conduct a policy simulation on water quality effects. I expand the econometric model to also consider the potential loss of vegetative cover due to cropland incentive payments, or slippage (Lichtenberg and Smith-Ramirez, 2011). Econometric results are linked with the Chesapeake Bay Program watershed model to estimate the change in abatement levels and costs for nitrogen, phosphorus and sediment under various behavioral scenarios. Finally, I use inverse sampling weights to derive statewide abatement quantities and costs for each of these pollutants, comparing these with TMDL targets for agriculture in Maryland.
Resumo:
This paper is concerned with the surface profiles of a strip after rigid bodies with serrated (saw-teeth) surfaces indent the strip and are subsequently removed. Plane-strain conditions are assumed. This has application in roughness transfer of final metal forming process. The effects of the semi-angle of the teeth, the depth of indentation and the friction on the contact surface on the profile are considered.
Resumo:
Prags Boulevard will form a 2km long pedestrian spine running east-west between the historic cities of Copenhagen and Amager. It is located on a some-what run down site, which accommodated illicit functions such as casual drug use and drinking, as well as sheds for squatters. The renovation of this site by the city of Copenhagen forms part of the Holmbladsgade renovation project, and a two-phase competition was held in 2001 to develop a green area and meeting place, transforming it into a place that residents would want to visit rather than avoid. The designer, local landscape architect Kristine Jensens recognises that though the site is linear it ‘has no traffic importance’, though as she notes ‘we like the project because it runs straight east west from the city pulse to the water of Oresund’. In developing the project, she has attempted to allow it to ‘run parallel’ to its existing illicit uses, using a ‘light touch’ of insertions. While it would be hard to describe the project as truly light in its touch (graphically, it is a very bold scheme), there is no doubt that it is parallel: in terms of use it runs alongside rather than against existing uses; in terms of its type it’s all about length, like a boulevard, although it clearly differs from a boulevard in other respects.
Resumo:
Agricultural soils emit about 50% of the global flux of N2O attributable to human influence, mostly in response to nitrogen fertilizer use. Recent evidence that the relationship between N2O fluxes and N-fertilizer additions to cereal maize are non-linear provides an opportunity to estimate regional N2O fluxes based on estimates of N application rates rather than as a simple percentage of N inputs as used by the Intergovernmental Panel on Climate Change (IPCC). We combined a simple empirical model of N2O production with the SOCRATES soil carbon dynamics model to estimate N2O and other sources of Global Warming Potential (GWP) from cereal maize across 19,000 cropland polygons in the North Central Region (NCR) of the US over the period 1964–2005. Results indicate that the loading of greenhouse gases to the atmosphere from cereal maize production in the NCR was 1.7 Gt CO2e, with an average 268 t CO2e produced per tonne of grain. From 1970 until 2005, GHG emissions per unit product declined on average by 2.8 t CO2e ha−1 annum−1, coinciding with a stabilisation in N application rate and consistent increases in grain yield from the mid-1970’s. Nitrous oxide production from N fertilizer inputs represented 59% of these emissions, soil C decline (0–30 cm) represented 11% of total emissions, with the remaining 30% (517 Mt) from the combustion of fuel associated with farm operations. Of the 126 Mt of N fertilizer applied to cereal maize from 1964 to 2005, we estimate that 2.2 Mt N was emitted as N2O when using a non-linear response model, equivalent to 1.75% of the applied N.
Resumo:
This paper presents the design and implementation of a microstrip to parallel strip balun which are frequently used as balanced antennas feed. This wideband balun transition is composed of a parallel strip which is connected to the spiral antenna and a microstrip line where the width of the ground plane is gradually reduced to eventually resemble the parallel strip. The taper accomplishes the mode and impedance transformation. This balun has significantly improved bandwidth characteristics. The entire circuit was fabricated on RT Duriod 5880 substrate. The circuit designs were simulated and optimised using CST Microwave Studio and the simulated results are compared with the measured results. The back-to-back microstrip to parallel strip has a return loss of better than 10 dB over a wide bandwidth from 1.75 to 15 GHz. The performance of the proposed balun was validated with the spiral antenna. The measured results were compared with the simulated results and it shows that the antenna operates well in wideband frequency range from 2.5 to 15 GHz.
Resumo:
The details of an application of the finite strip method to the elastic buckling analysis of thin-walled structures with various boundary conditions and subjected to single or combined loadings of longitudinal compression, transverse compression, bending and shear are presented. The presence of shear loading is accounted for by modifying the displacement functions which are commonly used in cases when shear is absent. A program based on the finite strip method was used to obtain the elastic buckling stress, buckling plot and buckling mode of thin-walled structures and some of these results are presented.
Resumo:
Global cereal production will need to increase by 50% to 70% to feed a world population of about 9 billion by 2050. This intensification is forecast to occur mostly in subtropical regions, where warm and humid conditions can promote high N2O losses from cropped soils. To secure high crop production without exacerbating N2O emissions, new nitrogen (N) fertiliser management strategies are necessary. This one-year study evaluated the efficacy of a nitrification inhibitor (3,4-dimethylpyrazole phosphate—DMPP) and different N fertiliser rates to reduce N2O emissions in a wheat–maize rotation in subtropical Australia. Annual N2O emissions were monitored using a fully automated greenhouse gas measuring system. Four treatments were fertilized with different rates of urea, including a control (40 kg-N ha−1 year−1), a conventional N fertiliser rate adjusted on estimated residual soil N (120 kg-N ha−1 year−1), a conventional N fertiliser rate (240 kg-N ha−1 year−1) and a conventional N fertiliser rate (240 kg-N ha−1 year−1) with nitrification inhibitor (DMPP) applied at top dressing. The maize season was by far the main contributor to annual N2O emissions due to the high soil moisture and temperature conditions, as well as the elevated N rates applied. Annual N2O emissions in the four treatments amounted to 0.49, 0.84, 2.02 and 0.74 kg N2O–N ha−1 year−1, respectively, and corresponded to emission factors of 0.29%, 0.39%, 0.69% and 0.16% of total N applied. Halving the annual conventional N fertiliser rate in the adjusted N treatment led to N2O emissions comparable to the DMPP treatment but extensively penalised maize yield. The application of DMPP produced a significant reduction in N2O emissions only in the maize season. The use of DMPP with urea at the conventional N rate reduced annual N2O emissions by more than 60% but did not affect crop yields. The results of this study indicate that: (i) future strategies aimed at securing subtropical cereal production without increasing N2O emissions should focus on the fertilisation of the summer crop; (ii) adjusting conventional N fertiliser rates on estimated residual soil N is an effective practice to reduce N2O emissions but can lead to substantial yield losses if the residual soil N is not assessed correctly; (iii) the application of DMPP is a feasible strategy to reduce annual N2O emissions from sub-tropical wheat–maize rotations. However, at the N rates tested in this study DMPP urea did not increase crop yields, making it impossible to recoup extra costs associated with this fertiliser. The findings of this study will support farmers and policy makers to define effective fertilisation strategies to reduce N2O emissions from subtropical cereal cropping systems while maintaining high crop productivity. More research is needed to assess the use of DMPP urea in terms of reducing conventional N fertiliser rates and subsequently enable a decrease of fertilisation costs and a further abatement of fertiliser-induced N2O emissions.
Resumo:
A multi-season 15N tracer recovery experiment was conducted on an Oxisol cropped with wheat, maize and sorghum to compare crop N recoveries of different fertilisation strategies and determine the main pathways of N losses that limit N recovery in these agroecosystems. In the wheat and maize seasons, 15N-labelled fertiliser was applied as conventional urea (CONV) and urea coated with a nitrification inhibitor (DMPP). In sorghum, the fate of 15N-labelled urea was monitored in this crop following a legume ley pasture (L70) or a grass ley pasture (G100). The fertiliser N applied to sorghum in the legume-cereal rotation was reduced (70 kg N ha−1) compared to the grass-cereal (100 kg N ha−1) to assess the availability of the N residual from the legume ley pasture. Average crop N recoveries were 73 % (CONV) and 77 % (DMPP) in wheat and 50 % (CONV) and 51 % (DMPP) in maize, while in sorghum were 71 % (L70) and 53 % (G100). Data gathered in this study indicate that the intrinsic physical and chemical conditions of Oxisols can be extremely effective in limiting N losses via deep leaching or denitrification. Elevated crop 15N recoveries can be therefore obtained in subtropical Oxisols using conventional urea while in these agroecosystems DMPP urea has no significant scope to increase fertiliser N recovery in the crop. Overall, introducing a legume phase to limit the fertiliser N requirements of the following cereal crop proved to be the most effective strategy to reduce N losses and increase fertiliser N recovery.
Resumo:
Driving while sleepy is associated with increased crash risk. Rumble strips are designed to alert a sleepy or inattentive driver when they deviate outside their driving lane. The current study sought to examine the effects of repeated rumble strip hits on levels of physiological and subjective sleepiness as well as simulated driving performance. In total, 36 regular shift workers drove a high-fidelity moving base simulator on a simulated road with rumble strips installed at the shoulder and centre line after a working a full night shift. The results show that on average, the first rumble strip occurred after 20 minutes of driving, with subsequent hits occurring 10 minutes later, with the last three occurring approximately every 5 minutes thereafter. Specifically, it was found that the first rumble strip hit reduced physiological sleepiness; however, subsequent hits did not increase alertness. Moreover, the results also demonstrate that increased subjective sleepiness levels, via the Karolinska Sleepiness Scale, were associated with a greater probability of hitting a rumble strip. The present results suggest that sleepiness is very resilient to even strongly arousing stimuli, with physiologicl and subjective sleepiness increasing over the duration of the drive, despite the interference by rumble strips.
Resumo:
A plane strain elastic interaction analysis of a strip footing resting on a reinforced soil bed has been made by using a combined analytical and finite element method (FEM). In this approach the stiffness matrix for the footing has been obtained using the FEM, For the reinforced soil bed (halfplane) the stiffness matrix has been obtained using an analytical solution. For the latter, the reinforced zone has been idealised as (i) an equivalent orthotropic infinite strip (composite approach) and (ii) a multilayered system (discrete approach). In the analysis, the interface between the strip footing and reinforced halfplane has been assumed as (i) frictionless and (ii) fully bonded. The contact pressure distribution and the settlement reduction have been given for different depths of footing and scheme of reinforcement in soil. The load-deformation behaviour of the reinforced soil obtained using the above modelling has been compared with some available analytical and model test results. The equivalent orthotropic approach proposed in this paper is easy to program and is shown to predict the reinforcing effects reasonably well.
Resumo:
By using small scale model tests, the interference effect on the ultimate bearing capacity of two closely spaced strip footings, placed on the surface of dry sand, was investigated. At any time, the footings were assumed to (1) carry exactly the same magnitude of load; and (2) settle to the same extent. No tilt of the footing was allowed. The effect of clear spacing (s) between two footings was explicitly studied. An interference of footings leads to a significant increase in their bearing capacity; the interference effect becomes even more substantial with an increase in the relative density of sand. The bearing capacity attains a peak magnitude at a certain (critical) spacing between two footings. The experimental observations presented in this technical note were similar to those given by different available theories. However, in a quantitative sense, the difference between the experiments and theories was seen to be still significant and it emphasizes the need of doing a further rigorous analysis in which the effect of stress level on the shear strength parameters of soil mass can be incorporated properly.