908 resultados para stress strength factor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the photovoltaic field, the back contact solar cells technology has appeared as an alternative to the traditional silicon modules. This new type of cells places both positive and negative contacts on the back side of the cells maximizing the exposed surface to the light and making easier the interconnection of the cells in the module. The Emitter Wrap-Through solar cell structure presents thousands of tiny holes to wrap the emitter from the front surface to the rear surface. These holes are made in a first step over the silicon wafers by means of a laser drilling process. This step is quite harmful from a mechanical point of view since holes act as stress concentrators leading to a reduction in the strength of these wafers. This paper presents the results of the strength characterization of drilled wafers. The study is carried out testing the samples with the ring on ring device. Finite Element models are developed to simulate the tests. The stress concentration factor of the drilled wafers under this load conditions is determined from the FE analysis. Moreover, the material strength is characterized fitting the fracture stress of the samples to a three-parameter Weibull cumulative distribution function. The parameters obtained are compared with the ones obtained in the analysis of a set of samples without holes to validate the method employed for the study of the strength of silicon drilled wafers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural integrity of any member subjected to a load gets impaired due to the presence of cracks or crack-like defects. The notch severity is one of the several parameters that promotes the brittle fracture. The most severe one is an ideal crack with infinitesimal width and infinitesimal or zero root radius. Though analytical investigations can handle an ideal crack, experimental work, either to validate the analytical conclusions or to impose the bounds, needs to be carried out on models or specimens containing the cracks which are far from the ideal ones. Thus instead of an ideal crack with infinitesimal width the actual model will have a slot or a slit of finite width and instead of a crack ending in zero root radius, the model contains a slot having a finite root radius. Another factor of great significance at the root is the notch angle along which the transition from the slot to the root takes place. This paper is concerned with the photoelastic determination of the notch stress intensity factor in the case of a “crack” subjected to Mode 1 deformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports an experimental investigation carried out, using the photoelastic technique, to determine the Mode I stress intensity factor in case of cracks of varying a/w ratio in single edge-notch specimens. The photoelastic information was analysed using the several methods proposed by earlier workers. The experimental results are compared with the analytical expressions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beams with a central edge crack, as well as other noncentral vertical and inclined edge cracks distributed symmetrically, subjected to three-point as well as four-point bending, are analysed using the finite element technique. Values of stress intensity factor K1 at the central crack tip for a crack-to-beam depth ratio Image equal to 0.5, are calculated for various cracked-beam configurations, using the compliance calibration technique as well as method of strain energy release rate. These are compared with the value of K1 for the case of a beam with central edge crack alone. Results of the present parametric study are used to specify the range of values pertaining to basic parameters such as crack-to-beam depth ratios, geometry and position with respect to central edge crack, of other macrocracks for which interaction exists. Accordingly, the macrocracks are classified as either interacting or noninteracting types. Hence for noninteracting types of cracks, analytical expressions available for the determination of K1 in the case of beam with a central edge crack alone, are applicable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A parametric study was carried out to determine the Stress Intensity Factor (SIF) in a cracked circular ring by using the photoelastic technique. The stress intensity factors for mode I deformation were determined by subjecting the specimens to the tensile loading from inner boundary and through the holes. The results of Non-Dimensional Stress Intensity Factor (NDSIF) variation with non-dimensional crack length for both methods of loading are compared with each other and with published results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamic response of a finite crack in an unbounded Functionally Graded Material (FGM) subjected to an antiplane shear loading is studied in this paper. The variation of the shear modulus of the functionally graded material is modeled by a quadratic increase along the direction perpendicular to the crack surface. The dynamic stress intensity factor is extracted from the asymptotic expansion of the stresses around the crack tip in the Laplace transform plane and obtained in the time domain by a numerical Laplace inversion technique. The influence of graded material property on the dynamic intensity factor is investigated. It is observed that the magnitude of dynamic stress intensity factor for a finite crack in such a functionally graded material is less than in the homogeneous material with a property identical to that of the FGM crack plane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elastodynamic stress intensity factor histories of an unbounded solid containing a semi-infinite plane crack that propagates at a constant velocity under 3-D time-independent combined mode loading are considered. The fundamental solution, which is the response of point loading, is obtained. Then, stress intensity factor histories of a general loading system are written out in terms of superposition integrals. The methods used here are the Laplace transform methods in conjunction with the Wiener-Hopf technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamic stress intensity factor history for a semi-infinite crack in an otherwise unbounded elastic body is analyzed. The crack is subjected to a pair of suddenly-applied point loadings on its faces at a distance L away from the crack tip. The exact expression for the mode I stress intensity factor as a function of time is obtained. The method of solution is based on the direct application of integral transforms, the Wiener-Hopf technique and the Cagniard-de Hoop method. Due to the existence of the characteristic length in loading this problem was long believed a knotty problem. Some features of the solutions are discussed and graphical result for numerical computation is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

本文利用线性压电学理论,编制了线性压电材料四结点等参有限元程序,进行了校核,并对PZT-5A材料压电智能元件和压电材料标准断裂试进行了计算,计算包括:①采用实际工程应用的压电智能元件尺寸,计算了元件的压电响应;并针对元件内部电极尖端区域容易引起破坏的现象,计算了该区域的奇异应力、应变场及电场。②计算了加力和加电两种情况下压电材料标准断裂试件应力强度因子影响系数F_I和电位移强度因子影响系数F_D。裂纹面边界条件采用D-P条件,试件包括紧凑拉伸标准试件和三点弯曲标准试件。③应用Lagrange乘子法将Parton裂纹边界条件加于有限元程序中,计算了上述两种标准断裂试件的F_I和F_D,计算结果与采用D-P裂纹边界条件的计算结果有很大差异。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stability analysis of residual soil slopes are now increasingly being performed with the incorporation of the matric suction component of strength. The matric suction (u(a)-u(w)) component of shear strength is known as apparent cohesion. The relation between matric suction and apparent cohesion (c(app)) may be linear or non-linear. The impact of type of apparent strength versus matric suction relationship on the stability of an unsaturated residual soil slope is examined in this study. Results of the study showed that the factor of safety values were unaffected by the nature of the strength versus matric suction relationship for the residual soil slope examined. This was so as contribution from the effective stress- strength component to the factor of safety predominated over the contribution made by the apparent strength component.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the advanced analytical methodologies such as Double- G and Double - K models for fracture analysis of concrete specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete. Brief details about characterization and experimentation of HSC, HSC1 and UHSC have been provided. Double-G model is based on energy concept and couples the Griffith's brittle fracture theory with the bridging softening property of concrete. The double-K fracture model is based on stress intensity factor approach. Various fracture parameters such as cohesive fracture toughness (4), unstable fracture toughness (K-Ic(c)), unstable fracture toughness (K-Ic(un)) and initiation fracture toughness (K-Ic(ini)) have been evaluated based on linear elastic fracture mechanics and nonlinear fracture mechanics principles. Double-G and double-K method uses the secant compliance at the peak point of measured P-CMOD curves for determining the effective crack length. Bi-linear tension softening model has been employed to account for cohesive stresses ahead of the crack tip. From the studies, it is observed that the fracture parameters obtained by using double - G and double - K models are in good agreement with each other. Crack extension resistance has been estimated by using the fracture parameters obtained through double - K model. It is observed that the values of the crack extension resistance at the critical unstable point are almost equal to the values of the unstable fracture toughness K-Ic(un) of the materials. The computed fracture parameters will be useful for crack growth study, remaining life and residual strength evaluation of concrete structural components.