937 resultados para strain transfer coefficient
Resumo:
Capillary pumped loop (CPL) and loop heat pipe (LHP) are passive two-phase heat transport devices. They have been gaining importance as a part of the thermal control system of spacecraft. The evaporation heat transfer coefficient at the tooth-wick interface of an LHP or CPL has a significant impact on the evaporator temperature. It is also the main parameter in sizing of a CPL or LHP. Experimentally determined evaporation heat transfer coefficients from a three-port CPL with tubular axially grooved (TAG) evaporator and a TAG LHP with acetone, R-134A, and ammonia as working fluids are presented in this paper. The influences of working fluid, hydrodynamic blocks in the core, evaporator configuration (LHP or CPL), and adverse elevation (evaporator above condenser) on the heat transfer coefficient are presented.
Resumo:
When simulating the High Pressure Die Casting ‘HPDC’ process, the heat transfer coefficient ‘HTC’ between the casting and the die is critical to accurately predict the quality of the casting. To determine the HTC at the metal–die interface a production die for an automotive engine bearing beam, Die 1, was instrumented with type K thermocouples. A Magmasoft® simulation model was generated with virtual thermocouple points placed in the same location as the production die. The temperature traces from the simulation model were compared to the instrumentation results. Using the default simulation HTC for the metal–die interface, a poor correlation was seen, with the temperature response being much less for the simulation model. Because of this, the HTC at the metal–die interface was modified in order to get a better fit. After many simulation iterations, a good fit was established using a peak HTC of 42,000 W/m2 K, this modified HTC was further validated by a second instrumented production die, proving that the modified HTC gives good correlation to the instrumentation trials. The updated HTC properties for the simulation model will improve the predictive capabilities of the casting simulation software and better predict casting defects.
Resumo:
Groups of animals (Wistar rats) were fed with rations doped with uranyl nitrate at concentrations ranging from 0.5 to 100 ppm. The uranium content in the ashes of the organs was measured by the neutron-fission track counting technique. The most striking result is that the transfer coefficients, as a function of the uranium concentration, exhibit a concave shape with a minimum around 20ppm-U for all organs. Explanations to interpret this finding are tentatively given. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Mode of access: Internet.
Resumo:
The aerated stirred reactor (ASR) has been widely used in biochemical and wastewater treatment processes. The information describing how the activated sludge properties and operation conditions affect the hydrodynamics and mass transfer coefficient is missing in the literature. The aim of this study was to investigate the influence of flow regime, superficial gas velocity (U-G), power consumption unit (P/V-L), sludge loading, and apparent viscosity (pap) of activated sludge fluid on the mixing time (t(m)), gas hold-up (epsilon), and volumetric mass transfer coefficient (kLa) in an activated sludge aerated stirred column reactor (ASCR). The activated sludge fluid performed a non-Newtonian rheological behavior. The sludge loading significantly affected the fluid hydrodynamics and mass transfer. With an increase in the UG and P/V-L, the epsilon and k(L)a increased, and the t(m), decreased. The E, kLa, and tm,were influenced dramatically as the flow regime changed from homogeneous to heterogeneous patterns. The proposed mathematical models predicted the experimental results well under experimental conditions, indicating that the U-G, P/V-L, and mu(ap) had significant impact on the t(m) epsilon, and k(L)a. These models were able to give the tm, F, and kLa values with an error around +/- 8%, and always less than +/- 10%. (c) 2005 Wiley Periodicals, Inc.
Resumo:
A heat transfer coefficient gauge has been built, obeying particular rules in order to ensure the relevance and accuracy of the collected information. The gauge body is made out of the same materials as the die casting die (H13). It is equipped with six thermocouples located at different depths in the body and with a sapphire light pipe. The light pipe is linked to an optic fibre, which is connected to a monochromatic pyrometer. Thermocouples and pyrometer measurements are recorded with a data logger. A high pressure die casting die was instrumented with one such gauge. A set of 150 castings was done and the data recorded. During the casting, some process parameters have been modified such as piston velocity, intensification pressure, delay before switch to the intensification stage, temperature of the alloy, etc.... The data was treated with an inverse method in order to transform temperature measurements into heat flux density and heat transfer coefficient plots. The piston velocity and the initial temperature of the die seem to be the process parameters that have the greatest influence on the heat transfer. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This study was to investigate the impacts of operating conditions and liquid properties on the hydrodynamics and volumetric mass transfer coefficient in activated sludge air-lift reactors. Experiments were conducted in internal and external air-lift reactors. The activated sludge liquid displayed a non-Newtonian rheological behavior. With an increase in the superficial gas velocity, the liquid circulation velocity, gas holdup and mass transfer coefficient increased, and the gas residence time decreased. The liquid circulation velocity, gas holdup and the mass transfer coefficient decreased as the sludge loading increased. The flow regime in the activated sludge air-lift reactors had significant effect on the liquid circulation velocity and the gas holdup, but appeared to have little impact on the mass transfer coefficient. The experimental results in this study were best described by the empirical models, in which the reactor geometry, superficial gas velocity and/or power consumption unit, and solid and fluid properties were employed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Measurements were carried out to determine local coefficients of heat transfer in short lengths of horizontal pipe, and in the region of an discontinuity in pipe diameter. Laminar, transitional and turbulent flow regimes were investigated, and mixtures of propylene glycol and water were used in the experiments to give a range of viscous fluids. Theoretical and empirical analyses were implemented to find how the fundamental mechanism of forced convection was modified by the secondary effects of free convection, temperature dependent viscosity, and viscous dissipation. From experiments with the short tube it was possible to determine simple empirical relationships describing the axial distribution of the local 1usselt number and its dependence on the Reynolds and Prandtl numbers. Small corrections were made to account for the secondary effects mentioned above. Two different entrance configurations were investigated to demonstrate how conditions upstream could influence the heat transfer coefficients measured downstream In experiments with a sudden contraction in pipe diameter the distribution of local 1u3se1t number depended on the Prandtl number of the fluid in a complicated way. Graphical data is presented describing this dependence for a range of fluids indicating how the local Nusselt number varied with the diameter-ratio. Ratios up to 3.34:1 were considered. With a sudden divergence in pipe diameter, it was possible to derive the axial distribution of the local Nusse1t number for a range of Reynolds and Prandtl numbers in a similar way to the convergence experiments. Difficulty was encountered in explaining some of the measurements obtained at low Reynolds numbers, and flow visualization techniques wore used to determine the complex flow patterns which could lead to the anomalous results mentioned. Tests were carried out with divergences up to 1:3.34 to find the way in which the local Nusselt number varied with the diameter ratio, and a few experiments were carried out with very large ratios up .to 14.4. A limited amount of theoretical analysis of the 'divergence' system was carried out to substantiate certain explanations of the heat transfer mechanisms postulated.
Resumo:
Local shell side coefficient measurements in the end conpartments of a model shell and tube heat exchanger have been made using an electrochemical technique. Limited data are also reported far the second compartment. The end compartment average coefficients have been found to be smaller than reported data for a corresponding internal conpartment. The second compartment data. have been shown to lie between those for the end compartments and the reported internal compartment data. Experimental data are reported fcr two port types and two baffle orientations. with data for the case of an inlet compartment impingement baffle also being given . Port type is shown to have a small effect on compartment coefficients, these being largely unaffected. Likewise, the outlet compartment average coefficients are slightly snaller than those for the inlet compartment, with the distribution of individual tube coefficients being similar. Baffle orientation has been shown to have no effect on average coefficients, but the distribution of the data is substantially affected. The use of an impingement baffle in the inlet compartment lessens the efect of baffle orientation on distribution . Recommendations are made for future work.
Resumo:
The fluid–particle interaction and the impact of different heat transfer conditions on pyrolysis of biomass inside a 150 g/h fluidised bed reactor are modelled. Two different size biomass particles (350 µm and 550 µm in diameter) are injected into the fluidised bed. The different biomass particle sizes result in different heat transfer conditions. This is due to the fact that the 350 µm diameter particle is smaller than the sand particles of the reactor (440 µm), while the 550 µm one is larger. The bed-to-particle heat transfer for both cases is calculated according to the literature. Conductive heat transfer is assumed for the larger biomass particle (550 µm) inside the bed, while biomass–sand contacts for the smaller biomass particle (350 µm) were considered unimportant. The Eulerian approach is used to model the bubbling behaviour of the sand, which is treated as a continuum. Biomass reaction kinetics is modelled according to the literature using a two-stage, semi-global model which takes into account secondary reactions. The particle motion inside the reactor is computed using drag laws, dependent on the local volume fraction of each phase. FLUENT 6.2 has been used as the modelling framework of the simulations with the whole pyrolysis model incorporated in the form of User Defined Function (UDF).
Resumo:
Experiments on drying of moist particles by ambient air were carried out to measure the mass transfer coefficient in a bubbling fluidized bed. Fine glass beads of mean diameter 125?µm were used as the bed material. Throughout the drying process, the dynamic material distribution was recorded by electrical capacitance tomography (ECT) and the exit air condition was recorded by a temperature/humidity probe. The ECT data were used to obtain qualitative and quantitative information on the bubble characteristics. The exit air moisture content was used to determine the water content in the bed. The measured overall mass transfer coefficient was in the range of 0.0145–0.021?m/s. A simple model based on the available correlations for bubble-cloud and cloud-dense interchange (two-region model) was used to predict the overall mass transfer coefficient. Comparison between the measured and predicted mass transfer coefficient have shown reasonable agreement. The results were also used to determine the relative importance of the two transfer regions.