986 resultados para stormwater reuse


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We treat urban stormwater as a problem as it causes flooding, transports pollutants and degrades the ecosystem health of waterways (Goonetilleke et al., 2014). Municipal authorities devote a significant component of their budget to capture and remove stormwater from urban areas as rapidly as possible. Unfortunately, it is a largely unappreciated fact that urban stormwater is the last available uncommitted water resource for our cities as the demand for potable water escalates due to growing urbanisation, industrialisation and higher living standards.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Zeolite-based technology can provide a cost effective solution for stormwater treatment for the removal of toxic heavy metals under increasing demand of safe water from alternative sources. This paper reviews the currently available knowledge relating to the effect of properties of zeolites such as pore size, surface area and Si:Al ratio and the physico-chemical conditions of the system such as pH, temperature, initial metal concentration and zeolite concentration on heavy metal removal performance. The primary aims are, to consolidate available knowledge and identify knowledge gaps. It was established that an in-depth understanding of operational issues such as, diffusion of metal ions into the zeolite pore structure, pore clogging, zeolite surface coverage by particulates in stormwater as well as the effect of pH on stormwater quality in the presence of zeolites is essential for developing a zeolite-based technology for the treatment of polluted stormwater. The optimum zeolite concentration to treat typical volumes of stormwater and initial heavy metal concentrations in stormwater should also be considered as operational issues in this regard. Additionally, leaching of aluminium and sodium ions from the zeolite structure to solution were identified as key issues requiring further research in the effort to develop cost effective solutions for the removal of heavy metals from stormwater.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new stormwater quality improvement device (SQID) called ‘Green Gully’ has been designed and developed in this study with an aim to re-using stormwater for irrigating plants and trees. The main purpose of the Green Gully is to collect road runoff/stormwater, make it suitable for irrigation and provide an automated network system for watering roadside plants and irrigational areas. This paper presents the design and development of Green Gully along with experimental and computational investigations of the performance of Green Gully. Performance (in the form of efficiency, i.e. the percentage of water flow through the gully grate) was experimentally determined using a gully model in the laboratory first, then a three dimensional numerical model was developed and simulated to predict the efficiency of Green Gully as a function of flow rate. Computational Fluid Dynamics (CFD) code FLUENT was used for the simulation. GAMBIT was used for geometry creation and mesh generation. Experimental and simulation results are discussed and compared in this paper. The predicted efficiency was compared with the laboratory measured efficiency. It was found that the simulated results are in good agreement with the experimental results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In recent years there has been increasing interest in the use of water resources generated within the urban boundary for potable supply substitution as a means of augmenting the current supply capacity. These urban water resources include roof and stormwater runoff. Expanding the use of stormwater runoff to add to the water supply and reduce water pollution are important objectives all over Australia. This book presents the background, significance and objectives of the research, as well as the reasons why stormwater plays a significant role as an alternative source of water.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Emerging contaminants (ECs) are chemical compounds commonly present in water. It is only recently that this family of compounds is being recognized as significant water pollutants (. ECs include a wide variety of chemicals such as pharmaceutical and personal care products (PPCPs), pesticides, hydrocarbons and hormones, among others, that once released into the environment exert adverse impacts on the human and wildlife endocrine system. Natural attenuation and conventional treatment processes are not capable of removing these micro-pollutants detected in wastewater influent and effluent and surface and drinking water. The main challenges related with presence of ECs in stormwater in the context of reuse are: a) Development of suitable laboratory test methodologies and protocols for ECs identification and quantification b) Identification of the sources of ECs in the urban environment; c) Understanding their impacts on human and/or ecosystem health; and d). Development of cost-effective removal technologies which are appropriate for large as well as small-scale application.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Toxic chemical pollutants such as heavy metals (HMs) are commonly present in urban stormwater. These pollutants can pose a significant risk to human health and hence a significant barrier for urban stormwater reuse. The primary aim of this study was to develop an approach for quantitatively assessing the risk to human health due to the presence of HMs in stormwater. This approach will lead to informed decision making in relation to risk management of urban stormwater reuse, enabling efficient implementation of appropriate treatment strategies. In this study, risks to human health from heavy metals were assessed as hazard index (HI) and quantified as a function of traffic and land use related parameters. Traffic and land use are the primary factors influencing heavy metal loads in the urban environment. The risks posed by heavy metals associated with total solids and fine solids (<150µm) were considered to represent the maximum and minimum risk levels, respectively. The study outcomes confirmed that Cr, Mn and Pb pose the highest risks, although these elements are generally present in low concentrations. The study also found that even though the presence of a single heavy metal does not pose a significant risk, the presence of multiple heavy metals could be detrimental to human health. These findings suggest that stormwater guidelines should consider the combined risk from multiple heavy metals rather than the threshold concentration of an individual species. Furthermore, it was found that risk to human health from heavy metals in stormwater is significantly influenced by traffic volume and the risk associated with stormwater from industrial areas is generally higher than that from commercial and residential areas.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Water quality of parking lot (~1,858 m2) stormwater runoff and its treated effluent flow were analyzed for total phosphorus (TP), total nitrogen (TN), total suspended solids (TSS), electrical conductivity (EC), copper, lead and zinc. The novel system under investigation, located at the University of Maryland, College Park, Maryland, includes a standard bioretention facility, underdrained to a cistern to store treated stormwater, and pumped to a vegetable garden for irrigation. The site abstraction, the average bioretention abstraction, and bowl volumes were estimated to be 8500, 4378, and 895 L, respectively; this indicates that rain events of more than 0.45 cm are necessary to produce runoff and more than 0.75 cm will produce system overflow. The cistern water quality indicates good-to-excellent treatment by the system. Compared to local tap water, cistern water has lower concentrations of TP, TN, EC (non-winter), copper, and zinc, indicating a good water source for irrigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho de Projecto de Natureza Científica para obtenção do grau de Mestre em Engenharia Civil

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Water Sensitive Urban Design (WSUD) practices such as wetlands, bioretention systems and swales are widely implemented in Australia’s urban areas for the mitigation of stormwater pollution and to enhance its reuse potential. In-depth research undertaken has confirmed that these systems do not always perform according to design expectations due to a diversity of reasons. To deliver anticipated benefits, it is critical that they are designed in conformity with catchment and rainfall characteristics and pollutant processes. This in turn entails an in-depth understanding of key pollutant processes. This paper presents the outcomes of extensive research investigations on pollutant characterisation and stormwater pollutant processes on urban catchment surfaces. Outcomes from the research studies revealed the complexities in physical and chemical characteristics of pollutants originating from urban catchments which are strongly influenced by rainfall and catchment characteristics. Based on the research outcomes, recommendations are provided to enhance stormwater treatment performance and to enhance its reuse potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water reuse has become an integral element of the "total water resources planning and management" along with the other elements such as water conservation, water use efficiency and management of the allocation of existing water sources. Researchers are working actively on the following aspects of water reuse: identification and characterization of different wastewaters that could be reclaimed, development of treatment technologies and effluent standards, quantification of potential gains due to recycling and risk management. The wastewaters that can be reclaimed are domestic and industrial wastewaters, grey water, black water, stormwater and rain water and their potential reuse lies in agriculture, aquaculture, industries, non-potable use in residential and community fronts and indirect and direct potable use. The treatment of wastewater ranges from secondary treatment to advanced treatment, which produces different "Classes" of reclaimed water. This paper evaluates the current status of the research on the above-mentioned important aspects of water reuse with relevant case studies and the future demand for reuse water. The direction in which the future-reuse schemes should be formulated so that they are safe, environmentally sustainable and cost effective are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study details the removal of common storm water pollutants along with heavy metals by enhanced sand filtration. Three filtration flow rates were trialled: 5, 10 and 20 m/h. The performance of each filter was rated on the ability to remove turbidity, suspended solids, dissolved solids, phosphorus, nitrogen, lead, copper and Zinc. Conventional sand filter was used as a performance benchmark, and compared with four sand filters that are enhanced with a nylon carpet fibre, polypropylene carpet fibre, Syrian carpet fibre-enhanced and alum sludge-enhanced sand filter. Carpet fibre-enhanced sand filtration was highly effective at filtering simulated storm water and in most cases performing well above the conventional sand filters. The carpet fibre-enhanced sand filters had no drop in flow rates over the 4 h filtration period with following removal rates: up to 90% total suspended solids, 70% zinc, 60% turbidity, 25% phosphorus, 15% nitrogen and 10% total dissolved solids. However, results showed that alum sludge-enhanced sand filter performed the highest, with removal rates up to 100% for total suspended solids, 80% zinc, 90% turbidity, up to 80% phosphorus, up to 40% nitrogen and 3% total dissolved solids. But the flow rates dropped approximately two-thirds of the original flow rates within the first hour. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the era of climate change sustainable urban development and in particular provision of sustainable urban infrastructure has become a key concept in dealing with environmental challenges. This paper discusses issues affecting stormwater quality and introduces a new indexing model that is to be used in evaluation of the stormwater quality in urban areas. The model has recently been developed and will be tested in a number of pilot projects in the Gold Coast, one of the fastest growing and environmentally challenged cities of Australia.