221 resultados para stormwater


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the era of climate change sustainable urban development and in particular provision of sustainable urban infrastructure has become a key concept in dealing with environmental challenges. This paper discusses issues affecting stormwater quality and introduces a new indexing model that is to be used in evaluation of the stormwater quality in urban areas. The model has recently been developed and will be tested in a number of pilot projects in the Gold Coast, one of the fastest growing and environmentally challenged cities of Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the age of climate change and rapid urbanisation, stormwater management and water sensitive urban design have become important issues for urban policy makers. This paper reports the initial findings of a research study that develops an indexing model for assessing stormwater quality in the Gold Coast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis details methodology to estimate urban stormwater quality based on a set of easy to measure physico-chemical parameters. These parameters can be used as surrogate parameters to estimate other key water quality parameters. The key pollutants considered in this study are nitrogen compounds, phosphorus compounds and solids. The use of surrogate parameter relationships to evaluate urban stormwater quality will reduce the cost of monitoring and so that scientists will have added capability to generate a large amount of data for more rigorous analysis of key urban stormwater quality processes, namely, pollutant build-up and wash-off. This in turn will assist in the development of more stringent stormwater quality mitigation strategies. The research methodology was based on a series of field investigations, laboratory testing and data analysis. Field investigations were conducted to collect pollutant build-up and wash-off samples from residential roads and roof surfaces. Past research has identified that these impervious surfaces are the primary pollutant sources to urban stormwater runoff. A specially designed vacuum system and rainfall simulator were used in the collection of pollutant build-up and wash-off samples. The collected samples were tested for a range of physico-chemical parameters. Data analysis was conducted using both univariate and multivariate data analysis techniques. Analysis of build-up samples showed that pollutant loads accumulated on road surfaces are higher compared to the pollutant loads on roof surfaces. Furthermore, it was found that the fraction of solids smaller than 150 ìm is the most polluted particle size fraction in solids build-up on both roads and roof surfaces. The analysis of wash-off data confirmed that the simulated wash-off process adopted for this research agrees well with the general understanding of the wash-off process on urban impervious surfaces. The observed pollutant concentrations in wash-off from road surfaces were different to pollutant concentrations in wash-off from roof surfaces. Therefore, firstly, the identification of surrogate parameters was undertaken separately for roads and roof surfaces. Secondly, a common set of surrogate parameter relationships were identified for both surfaces together to evaluate urban stormwater quality. Surrogate parameters were identified for nitrogen, phosphorus and solids separately. Electrical conductivity (EC), total organic carbon (TOC), dissolved organic carbon (DOC), total suspended solids (TSS), total dissolved solids (TDS), total solids (TS) and turbidity (TTU) were selected as the relatively easy to measure parameters. Consequently, surrogate parameters for nitrogen and phosphorus were identified from the set of easy to measure parameters for both road surfaces and roof surfaces. Additionally, surrogate parameters for TSS, TDS and TS which are key indicators of solids were obtained from EC and TTU which can be direct field measurements. The regression relationships which were developed for surrogate parameters and key parameter of interest were of a similar format for road and roof surfaces, namely it was in the form of simple linear regression equations. The identified relationships for road surfaces were DTN-TDS:DOC, TP-TS:TOC, TSS-TTU, TDS-EC and TSTTU: EC. The identified relationships for roof surfaces were DTN-TDS and TSTTU: EC. Some of the relationships developed had a higher confidence interval whilst others had a relatively low confidence interval. The relationships obtained for DTN-TDS, DTN-DOC, TP-TS and TS-EC for road surfaces demonstrated good near site portability potential. Currently, best management practices are focussed on providing treatment measures for stormwater runoff at catchment outlets where separation of road and roof runoff is not found. In this context, it is important to find a common set of surrogate parameter relationships for road surfaces and roof surfaces to evaluate urban stormwater quality. Consequently DTN-TDS, TS-EC and TS-TTU relationships were identified as the common relationships which are capable of providing measurements of DTN and TS irrespective of the surface type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in wash-off in urban stormwater in Gold Coast, Australia. Runoff samples collected from residential, industrial and commercial sites were separated into a dissolved fraction (<0.45µm), and three particulate fractions (0.45-75µm, 75-150µm and >150µm). Patterns in the distribution of PAHs in the fractions were investigated using Principal Component Analysis. Regardless of the land use and particle size fraction characteristics, the presence of organic carbon plays a dominant role in the distribution of PAHs. The PAHs concentrations were also found to decrease with rainfall duration. Generally, the 1- and 2-year average recurrence interval rainfall events were associated with the majority of the PAHs and the wash-off was a source limiting process. In the context of stormwater quality mitigation, targeting the initial part of the rainfall event is the most effective treatment strategy. The implications of the study results for urban stormwater quality management are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the outcomes of a study which focused on evaluating roof surfaces as stormwater harvesting catchments. Build-up and wash-off samples were collected from model roof surfaces. The collected build-up samples were separated into five different particle size ranges prior to the analysis of physico-chemical parameters. Study outcomes showed that roof surfaces are efficient catchment surfaces for the deposition of fine particles which travel over long distances. Roof surfaces contribute relatively high pollutant loads to the runoff and hence significantly influence the quality of the harvested rainwater. Pollutants associated with solids build-up on roof surfaces can vary with time, even with minimal changes to total solids load and particle size distribution. It is postulated that this variability is due to changes in distant atmospheric pollutant sources and wind patterns. The study highlighted the requirement for first flush devices to divert the highly polluted initial portion of roof runoff. Furthermore, it is highly recommended to not to harvest runoff from small intensity rainfall events since there is a high possibility that the runoff would contain a significant amount of pollutants even after the initial runoff fraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The quality of stormwater runoff from ports is significant as it can be an important source of pollution to the marine environment. This is also a significant issue for the Port of Brisbane as it is located in an area of high environmental values. Therefore, it is imperative to develop an in-depth understanding of stormwater runoff quality to ensure that appropriate strategies are in place for quality improvement. ---------------- The Port currently has a network of stormwater sample collection points where event based samples together with grab samples are tested for a range of water quality parameters. Whilst this information provides a ‘snapshot’ of the pollutants being washed from the catchment/s, it does not allow for a quantifiable assessment of total contaminant loads being discharged to the waters of Moreton Bay. It also does not represent pollutant build-up and wash-off from the different land uses across a broader range of rainfall events which might be expected. As such, it is difficult to relate stormwater quality to different pollutant sources within the Port environment. ----------------- Consequently, this would make the source tracking of pollutants to receiving waters extremely difficult and in turn the ability to implement appropriate mitigation measures. Also, without this detailed understanding, the efficacy of the various stormwater quality mitigation measures implemented cannot be determined with certainty. --------------- Current knowledge on port stormwater runoff quality Currently, little knowledge exists with regards to the pollutant generation capacity specific to port land uses as these do not necessarily compare well with conventional urban industrial or commercial land use due to the specific nature of port activities such as inter-modal operations and cargo management. Furthermore, traffic characteristics in a port area are different to a conventional urban area. Consequently, as data inputs based on an industrial and commercial land uses for modelling purposes is questionable. ------------------ A comprehensive review of published research failed to locate any investigations undertaken with regards to pollutant build-up and wash-off for port specific land uses. Furthermore, there is very limited information made available by various ports worldwide about the pollution generation potential of their facilities. Published work in this area has essentially focussed on the water quality or environmental values in the receiving waters such as the downstream bay or estuary. ----------------- The Project: The research project is an outcome of the collaborative Partnership between the Port of Brisbane Corporation (POBC) and Queensland University of Technology (QUT). A key feature of this Partnership is the undertaking of ‘cutting edge’ research to strengthen the environmental custodianship of the Port area. This project aims to develop a port specific stormwater quality model to allow informed decision making in relation to stormwater quality improvement in the context of the increased growth of the Port. --------------- Stage 1 of the research project focussed on the assessment of pollutant build-up and wash-off using rainfall simulation from the current Port of Brisbane facilities with the longer-term objective of contributing to the development of ecological risk mitigation strategies for future expansion scenarios. Investigation of complex processes such as pollutant wash-off using naturally occurring rainfall events has inherent difficulties. These can be overcome using simulated rainfall for the investigations. ----------------- The deliverables for Stage 1 included the following: * Pollutant build-up and wash-off profiles for six primary land uses within the Port of Brisbane to be used for water quality model development. * Recommendations with regards to future stormwater quality monitoring and pollution mitigation measures. The outcomes are expected to deliver the following benefits to the Port of Brisbane: * The availability of Port specific pollutant build-up and wash-off data will enable the implementation of customised stormwater pollution mitigation strategies. * The water quality data collected would form the baseline data for a Port specific water quality model for mitigation and predictive purposes. * To be at the cutting-edge in terms of water quality management and environmental best practice in the context of port infrastructure. ---------------- Conclusions: The important conclusions from the study are: * It confirmed that the Port environment is unique in terms of pollutant characteristics and is not comparable to typical urban land uses. * For most pollutant types, the Port land uses exhibited lower pollutant concentrations when compared to typical urban land uses. * The pollutant characteristics varied across the different land uses and were not consistent in terms of the land use. Hence, the implementation of stereotypical structural water quality improvement devices could be of limited value. * The <150m particle size range was predominant in suspended solids for pollutant build-up as well as wash-off. Therefore, if suspended solids are targeted as the surrogate parameter for water quality improvement, this specific particle size range needs to be removed. ------------------- Recommendations: Based on the study results the following preliminary recommendations are made: * Due to the appreciable variation in pollutant characteristics for different port land uses, any water quality monitoring stations should preferably be located such that source areas can be easily identified. * The study results having identified significant pollutants for the different land uses should enable the development of a more customised water quality monitoring and testing regime targeting the critical pollutants. * A ‘one size fits all’ approach may not be appropriate for the different port land uses due to the varying pollutant characteristics. As such, pollution mitigation will need to be specifically tailored to suit the specific land use. * Any structural measures implemented for pollution mitigation to be effective should have the capability to remove suspended solids of size <150m. * Based on the results presented and the particularly the fact that the Port land uses cannot be compared to conventional urban land uses in relation to pollutant generation, consideration should be given to the development of a port specific water quality model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The quality of stormwater runoff from ports is significant as it can be an important source of pollution to the marine environment. This is also a significant issue for the Port of Brisbane as it is located in an area of high environmental values. Therefore, it is imperative to develop an in-depth understanding of stormwater runoff quality to ensure that appropriate strategies are in place for quality improvement, where necessary. To this end, the Port of Brisbane Corporation aimed to develop a port specific stormwater model for the Fisherman Islands facility. The need has to be considered in the context of the proposed future developments of the Port area. ----------------- The Project: The research project is an outcome of the collaborative Partnership between the Port of Brisbane Corporation (POBC) and Queensland University of Technology (QUT). A key feature of this Partnership is that it seeks to undertake research to assist the Port in strengthening the environmental custodianship of the Port area through ‘cutting edge’ research and its translation into practical application. ------------------ The project was separated into two stages. The first stage developed a quantitative understanding of the generation potential of pollutant loads in the existing land uses. This knowledge was then used as input for the stormwater quality model developed in the subsequent stage. The aim is to expand this model across the yet to be developed port expansion area. This is in order to predict pollutant loads associated with stormwater flows from this area with the longer term objective of contributing to the development of ecological risk mitigation strategies for future expansion scenarios. ----------------- Study approach: Stage 1 of the overall study confirmed that Port land uses are unique in terms of the anthropogenic activities occurring on them. This uniqueness in land use results in distinctive stormwater quality characteristics different to other conventional urban land uses. Therefore, it was not scientifically valid to consider the Port as belonging to a single land use category or to consider as being similar to any typical urban land use. The approach adopted in this study was very different to conventional modelling studies where modelling parameters are developed using calibration. The field investigations undertaken in Stage 1 of the overall study helped to create fundamental knowledge on pollutant build-up and wash-off in different Port land uses. This knowledge was then used in computer modelling so that the specific characteristics of pollutant build-up and wash-off can be replicated. This meant that no calibration processes were involved due to the use of measured parameters for build-up and wash-off. ---------------- Conclusions: Stage 2 of the study was primarily undertaken using the SWMM stormwater quality model. It is a physically based model which replicates natural processes as closely as possible. The time step used and catchment variability considered was adequate to accommodate the temporal and spatial variability of input parameters and the parameters used in the modelling reflect the true nature of rainfall-runoff and pollutant processes to the best of currently available knowledge. In this study, the initial loss values adopted for the impervious surfaces are relatively high compared to values noted in research literature. However, given the scientifically valid approach used for the field investigations, it is appropriate to adopt the initial losses derived from this study for future modelling of Port land uses. The relatively high initial losses will reduce the runoff volume generated as well as the frequency of runoff events significantly. Apart from initial losses, most of the other parameters used in SWMM modelling are generic to most modelling studies. Development of parameters for MUSIC model source nodes was one of the primary objectives of this study. MUSIC, uses the mean and standard deviation of pollutant parameters based on a normal distribution. However, based on the values generated in this study, the variation of Event Mean Concentrations (EMCs) for Port land uses within the given investigation period does not fit a normal distribution. This is possibly due to the fact that only one specific location was considered, namely the Port of Brisbane unlike in the case of the MUSIC model where a range of areas with different geographic and climatic conditions were investigated. Consequently, the assumptions used in MUSIC are not totally applicable for the analysis of water quality in Port land uses. Therefore, in using the parameters included in this report for MUSIC modelling, it is important to note that it may result in under or over estimations of annual pollutant loads. It is recommended that the annual pollutant load values given in the report should be used as a guide to assess the accuracy of the modelling outcomes. A step by step guide for using the knowledge generated from this study for MUSIC modelling is given in Table 4.6. ------------------ Recommendations: The following recommendations are provided to further strengthen the cutting edge nature of the work undertaken: * It is important to further validate the approach recommended for stormwater quality modelling at the Port. Validation will require data collection in relation to rainfall, runoff and water quality from the selected Port land uses. Additionally, the recommended modelling approach could be applied to a soon-to-be-developed area to assess ‘before’ and ‘after’ scenarios. * In the modelling study, TSS was adopted as the surrogate parameter for other pollutants. This approach was based on other urban water quality research undertaken at QUT. The validity of this approach should be further assessed for Port land uses. * The adoption of TSS as a surrogate parameter for other pollutants and the confirmation that the <150 m particle size range was predominant in suspended solids for pollutant wash-off gives rise to a number of important considerations. The ability of the existing structural stormwater mitigation measures to remove the <150 m particle size range need to be assessed. The feasibility of introducing source control measures as opposed to end-of-pipe measures for stormwater quality improvement may also need to be considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Port land uses are subjected to unique anthropogenic activities compared to typical urban land uses. This uniqueness results in distinctive stormwater quality characteristics. Such distinction in stormwater quality has made conventional approaches used for pollutant load estimations inaccurate. This is also the case for the Port of Brisbane (PoB). The study discussed in the paper was conducted to estimate the pollutant contributions from Port specific land uses at PoB. For estimation, software modules embedded in Mike URBAN were used. An innovative approach was adopted in modelling where the conventional model calibration step was not needed to be performed to generate suitable site specific parameters. Instead, equations and site specific parameters that replicate pollutant build-up and wash-off were generated from an extensive field investigation. Models were simulated incorporating site specific parameters from six different Port specific land uses and rainfall events from three representative years. Outcomes of the modelling exercise were used to identify the distinct pollutant contributions from different Port land uses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the outcomes of a research project, which focused on developing a set of surrogate parameters to evaluate urban stormwater quality using simulated rainfall. Use of surrogate parameters has the potential to enhance the rapid generation of urban stormwater quality data based on on-site measurements and thereby reduce resource intensive laboratory analysis. The samples collected from rainfall simulations were tested for a range of physico-chemical parameters which are key indicators of nutrients, solids and organic matter. The analysis revealed that [total dissolved solids (TDS) and dissolved organic carbon (DOC)]; [total solids (TS) and total organic carbon (TOC)]; [turbidity (TTU)]; [electrical conductivity (EC)]; [TTU and EC] as appropriate surrogate parameters for dissolved total nitrogen (DTN), total phosphorus (TP), total suspended solids (TSS), TDS and TS respectively. Relationships obtained for DTN-TDS, DTN-DOC, and TP-TS demonstrated good portability potential. The portability of the relationship developed for TP and TOC was found to be unsatisfactory. The relationship developed for TDS-EC and TS-EC also demonstrated poor portability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stormwater has been recognised as one of the main culprits of aquatic ecosystem pollution and as a significant threat to the goal of ecological sustainable development. Water sensitive urban design is one of the key responses to the need to better manage urban stormwater runoff, the objectives of which go beyond rapid and efficient conveyance. Underpinned by the concepts of sustainable urban development, water sensitive urban design has proven to be an efficient and environmentally-friendly approach to urban stormwater management, with the necessary technical know-how and skills already available. However, large-scale implementation of water sensitive urban design is still lacking in Australia due to significant impediments and negative perceptions. Identification of the issues, barriers and drivers that affect sustainability outcomes of urban stormwater management is one of the first steps towards encouraging the wide-scale uptake of water sensitive urban design features which integrate sustainable urban stormwater management. This chapter investigates key water sensitive urban design perceptions, drivers and barriers in order to improve sustainable urban stormwater management efforts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water Sensitive Urban Design (WSUD) practices such as wetlands, bioretention systems and swales are widely implemented in Australia’s urban areas for the mitigation of stormwater pollution and to enhance its reuse potential. In-depth research undertaken has confirmed that these systems do not always perform according to design expectations due to a diversity of reasons. To deliver anticipated benefits, it is critical that they are designed in conformity with catchment and rainfall characteristics and pollutant processes. This in turn entails an in-depth understanding of key pollutant processes. This paper presents the outcomes of extensive research investigations on pollutant characterisation and stormwater pollutant processes on urban catchment surfaces. Outcomes from the research studies revealed the complexities in physical and chemical characteristics of pollutants originating from urban catchments which are strongly influenced by rainfall and catchment characteristics. Based on the research outcomes, recommendations are provided to enhance stormwater treatment performance and to enhance its reuse potential.