919 resultados para stopping rule
Resumo:
Solutions to combinatorial optimization, such as p-median problems of locating facilities, frequently rely on heuristics to minimize the objective function. The minimum is sought iteratively and a criterion is needed to decide when the procedure (almost) attains it. However, pre-setting the number of iterations dominates in OR applications, which implies that the quality of the solution cannot be ascertained. A small branch of the literature suggests using statistical principles to estimate the minimum and use the estimate for either stopping or evaluating the quality of the solution. In this paper we use test-problems taken from Baesley's OR-library and apply Simulated Annealing on these p-median problems. We do this for the purpose of comparing suggested methods of minimum estimation and, eventually, provide a recommendation for practioners. An illustration ends the paper being a problem of locating some 70 distribution centers of the Swedish Post in a region.
Resumo:
OBJECTIVES: To investigate the frequency of interim analyses, stopping rules, and data safety and monitoring boards (DSMBs) in protocols of randomized controlled trials (RCTs); to examine these features across different reasons for trial discontinuation; and to identify discrepancies in reporting between protocols and publications. STUDY DESIGN AND SETTING: We used data from a cohort of RCT protocols approved between 2000 and 2003 by six research ethics committees in Switzerland, Germany, and Canada. RESULTS: Of 894 RCT protocols, 289 prespecified interim analyses (32.3%), 153 stopping rules (17.1%), and 257 DSMBs (28.7%). Overall, 249 of 894 RCTs (27.9%) were prematurely discontinued; mostly due to reasons such as poor recruitment, administrative reasons, or unexpected harm. Forty-six of 249 RCTs (18.4%) were discontinued due to early benefit or futility; of those, 37 (80.4%) were stopped outside a formal interim analysis or stopping rule. Of 515 published RCTs, there were discrepancies between protocols and publications for interim analyses (21.1%), stopping rules (14.4%), and DSMBs (19.6%). CONCLUSION: Two-thirds of RCT protocols did not consider interim analyses, stopping rules, or DSMBs. Most RCTs discontinued for early benefit or futility were stopped without a prespecified mechanism. When assessing trial manuscripts, journals should require access to the protocol.
Resumo:
OBJECTIVES To investigate the frequency of interim analyses, stopping rules, and data safety and monitoring boards (DSMBs) in protocols of randomized controlled trials (RCTs); to examine these features across different reasons for trial discontinuation; and to identify discrepancies in reporting between protocols and publications. STUDY DESIGN AND SETTING We used data from a cohort of RCT protocols approved between 2000 and 2003 by six research ethics committees in Switzerland, Germany, and Canada. RESULTS Of 894 RCT protocols, 289 prespecified interim analyses (32.3%), 153 stopping rules (17.1%), and 257 DSMBs (28.7%). Overall, 249 of 894 RCTs (27.9%) were prematurely discontinued; mostly due to reasons such as poor recruitment, administrative reasons, or unexpected harm. Forty-six of 249 RCTs (18.4%) were discontinued due to early benefit or futility; of those, 37 (80.4%) were stopped outside a formal interim analysis or stopping rule. Of 515 published RCTs, there were discrepancies between protocols and publications for interim analyses (21.1%), stopping rules (14.4%), and DSMBs (19.6%). CONCLUSION Two-thirds of RCT protocols did not consider interim analyses, stopping rules, or DSMBs. Most RCTs discontinued for early benefit or futility were stopped without a prespecified mechanism. When assessing trial manuscripts, journals should require access to the protocol.
Resumo:
Threshold estimation with sequential procedures is justifiable on the surmise that the index used in the so-called dynamic stopping rule has diagnostic value for identifying when an accurate estimate has been obtained. The performance of five types of Bayesian sequential procedure was compared here to that of an analogous fixed-length procedure. Indices for use in sequential procedures were: (1) the width of the Bayesian probability interval, (2) the posterior standard deviation, (3) the absolute change, (4) the average change, and (5) the number of sign fluctuations. A simulation study was carried out to evaluate which index renders estimates with less bias and smaller standard error at lower cost (i.e. lower average number of trials to completion), in both yes–no and two-alternative forced-choice (2AFC) tasks. We also considered the effect of the form and parameters of the psychometric function and its similarity with themodel function assumed in the procedure. Our results show that sequential procedures do not outperform fixed-length procedures in yes–no tasks. However, in 2AFC tasks, sequential procedures not based on sign fluctuations all yield minimally better estimates than fixed-length procedures, although most of the improvement occurs with short runs that render undependable estimates and the differences vanish when the procedures run for a number of trials (around 70) that ensures dependability. Thus, none of the indices considered here (some of which are widespread) has the diagnostic value that would justify its use. In addition, difficulties of implementation make sequential procedures unfit as alternatives to fixed-length procedures.
Resumo:
We consider a small extent sensor network for event detection, in which nodes periodically take samples and then contend over a random access network to transmit their measurement packets to the fusion center. We consider two procedures at the fusion center for processing the measurements. The Bayesian setting, is assumed, that is, the fusion center has a prior distribution on the change time. In the first procedure, the decision algorithm at the fusion center is network-oblivious and makes a decision only when a complete vector of measurements taken at a sampling instant is available. In the second procedure, the decision algorithm at the fusion center is network-aware and processes measurements as they arrive, but in a time-causal order. In this case, the decision statistic depends on the network delays, whereas in the network-oblivious case, the decision statistic does not. This yields a Bayesian change-detection problem with a trade-off between the random network delay and the decision delay that is, a higher sampling rate reduces the decision delay but increases the random access delay. Under periodic sampling, in the network-oblivious case, the structure of the optimal stopping rule is the same as that without the network, and the optimal change detection delay decouples into the network delay and the optimal decision delay without the network. In the network-aware case, the optimal stopping problem is analyzed as a partially observable Markov decision process, in which the states of the queues and delays in the network need to be maintained. A sufficient decision statistic is the network state and the posterior probability of change having occurred, given the measurements received and the state of the network. The optimal regimes are studied using simulation.
Resumo:
There is a natural norm associated with a starting point of the homogeneous self-dual (HSD) embedding model for conic convex optimization. In this norm two measures of the HSD model’s behavior are precisely controlled independent of the problem instance: (i) the sizes of ε-optimal solutions, and (ii) the maximum distance of ε-optimal solutions to the boundary of the cone of the HSD variables. This norm is also useful in developing a stopping-rule theory for HSD-based interior-point methods such as SeDuMi. Under mild assumptions, we show that a standard stopping rule implicitly involves the sum of the sizes of the ε-optimal primal and dual solutions, as well as the size of the initial primal and dual infeasibility residuals. This theory suggests possible criteria for developing starting points for the homogeneous self-dual model that might improve the resulting solution time in practice
Resumo:
Longevity risk has become one of the major risks facing the insurance and pensions markets globally. The trade in longevity risk is underpinned by accurate forecasting of mortality rates. Using techniques from macroeconomic forecasting, we propose a dynamic factor model of mortality that fits and forecasts mortality rates parsimoniously.We compare the forecasting quality of this model and of existing models and find that the dynamic factor model generally provides superior forecasts when applied to international mortality data. We also show that existing multifactorial models have superior fit but their forecasting performance worsens as more factors are added. The dynamic factor approach used here can potentially be further improved upon by applying an appropriate stopping rule for the number of static and dynamic factors.
Resumo:
Sequential methods provide a formal framework by which clinical trial data can be monitored as they accumulate. The results from interim analyses can be used either to modify the design of the remainder of the trial or to stop the trial as soon as sufficient evidence of either the presence or absence of a treatment effect is available. The circumstances under which the trial will be stopped with a claim of superiority for the experimental treatment, must, however, be determined in advance so as to control the overall type I error rate. One approach to calculating the stopping rule is the group-sequential method. A relatively recent alternative to group-sequential approaches is the adaptive design method. This latter approach provides considerable flexibility in changes to the design of a clinical trial at an interim point. However, a criticism is that the method by which evidence from different parts of the trial is combined means that a final comparison of treatments is not based on a sufficient statistic for the treatment difference, suggesting that the method may lack power. The aim of this paper is to compare two adaptive design approaches with the group-sequential approach. We first compare the form of the stopping boundaries obtained using the different methods. We then focus on a comparison of the power of the different trials when they are designed so as to be as similar as possible. We conclude that all methods acceptably control type I error rate and power when the sample size is modified based on a variance estimate, provided no interim analysis is so small that the asymptotic properties of the test statistic no longer hold. In the latter case, the group-sequential approach is to be preferred. Provided that asymptotic assumptions hold, the adaptive design approaches control the type I error rate even if the sample size is adjusted on the basis of an estimate of the treatment effect, showing that the adaptive designs allow more modifications than the group-sequential method.
Resumo:
This report describes the concept for a clinical trial that uses carbamazepine as the gold-standard active control for a study of newly diagnosed patients. The authors describe an endpoint including efficacy and tolerability, and a stopping rule that uses a series of interim analyses in order to reach a conclusion as efficiently as possible without sacrificing reliability.
Resumo:
This thesis presents a creative and practical approach to dealing with the problem of selection bias. Selection bias may be the most important vexing problem in program evaluation or in any line of research that attempts to assert causality. Some of the greatest minds in economics and statistics have scrutinized the problem of selection bias, with the resulting approaches – Rubin’s Potential Outcome Approach(Rosenbaum and Rubin,1983; Rubin, 1991,2001,2004) or Heckman’s Selection model (Heckman, 1979) – being widely accepted and used as the best fixes. These solutions to the bias that arises in particular from self selection are imperfect, and many researchers, when feasible, reserve their strongest causal inference for data from experimental rather than observational studies. The innovative aspect of this thesis is to propose a data transformation that allows measuring and testing in an automatic and multivariate way the presence of selection bias. The approach involves the construction of a multi-dimensional conditional space of the X matrix in which the bias associated with the treatment assignment has been eliminated. Specifically, we propose the use of a partial dependence analysis of the X-space as a tool for investigating the dependence relationship between a set of observable pre-treatment categorical covariates X and a treatment indicator variable T, in order to obtain a measure of bias according to their dependence structure. The measure of selection bias is then expressed in terms of inertia due to the dependence between X and T that has been eliminated. Given the measure of selection bias, we propose a multivariate test of imbalance in order to check if the detected bias is significant, by using the asymptotical distribution of inertia due to T (Estadella et al. 2005) , and by preserving the multivariate nature of data. Further, we propose the use of a clustering procedure as a tool to find groups of comparable units on which estimate local causal effects, and the use of the multivariate test of imbalance as a stopping rule in choosing the best cluster solution set. The method is non parametric, it does not call for modeling the data, based on some underlying theory or assumption about the selection process, but instead it calls for using the existing variability within the data and letting the data to speak. The idea of proposing this multivariate approach to measure selection bias and test balance comes from the consideration that in applied research all aspects of multivariate balance, not represented in the univariate variable- by-variable summaries, are ignored. The first part contains an introduction to evaluation methods as part of public and private decision process and a review of the literature of evaluation methods. The attention is focused on Rubin Potential Outcome Approach, matching methods, and briefly on Heckman’s Selection Model. The second part focuses on some resulting limitations of conventional methods, with particular attention to the problem of how testing in the correct way balancing. The third part contains the original contribution proposed , a simulation study that allows to check the performance of the method for a given dependence setting and an application to a real data set. Finally, we discuss, conclude and explain our future perspectives.
Resumo:
Motivation: Array CGH technologies enable the simultaneous measurement of DNA copy number for thousands of sites on a genome. We developed the circular binary segmentation (CBS) algorithm to divide the genome into regions of equal copy number (Olshen {\it et~al}, 2004). The algorithm tests for change-points using a maximal $t$-statistic with a permutation reference distribution to obtain the corresponding $p$-value. The number of computations required for the maximal test statistic is $O(N^2),$ where $N$ is the number of markers. This makes the full permutation approach computationally prohibitive for the newer arrays that contain tens of thousands markers and highlights the need for a faster. algorithm. Results: We present a hybrid approach to obtain the $p$-value of the test statistic in linear time. We also introduce a rule for stopping early when there is strong evidence for the presence of a change. We show through simulations that the hybrid approach provides a substantial gain in speed with only a negligible loss in accuracy and that the stopping rule further increases speed. We also present the analysis of array CGH data from a breast cancer cell line to show the impact of the new approaches on the analysis of real data. Availability: An R (R Development Core Team, 2006) version of the CBS algorithm has been implemented in the ``DNAcopy'' package of the Bioconductor project (Gentleman {\it et~al}, 2004). The proposed hybrid method for the $p$-value is available in version 1.2.1 or higher and the stopping rule for declaring a change early is available in version 1.5.1 or higher.
Resumo:
Various theories have been put forward to explain the fact that humans experience menopause while virtually no animals do. This paper aims to investigate one such theory: children provide a savings technology into old age, but as human babies are usually large and have long gestation periods, a substantial risk of death exists for the mother as she bears children. It seems therefore appropriate to impose a stopping rule for fertility. Given an objective (support for old age) and demographics (mortality of mother and children), an optimal age for menopause can be calculated. Using demographic data from populations that have seen little influence from modern medicine, this optimal age is compared to empirical evidence.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
We consider a buying-selling problem when two stops of a sequence of independent random variables are required. An optimal stopping rule and the value of a game are obtained.
Resumo:
The rule that eukaryotic ribosomes initiate translation exclusively at the 5' proximal AUG codon is abrogated under rare conditions. One circumstance that has been suggested to allow dual initiation is close apposition of a second AUG codon. A possible mechanism might be that the scanning 40S ribosomal subunit flutters back and forth instead of stopping cleanly at the first AUG. This hypothesis seems to be ruled out by evidence presented herein that in certain mRNAs, the first of two close AUG codons is recognized uniquely. To achieve this, the 5' proximal AUG has to be provided with the full consensus sequence; even small departures allow a second nearby AUG codon to be reached by leaky scanning. This context-dependent leaky scanning unexpectedly fails when the second AUG codon is moved some distance from the first. A likely explanation, based on analyzing the accessibility of a far-downstream AUG codon under conditions of initiation versus elongation, is that 80S elongating ribosomes advancing from the 5' proximal start site can mask potential downstream start sites.