934 resultados para stone mastic asphalt
Resumo:
The present study investigates the benefits of stabilizing the stone mastic asphalt (SMA) mixture in flexible pavement with shredded waste plastic. Conventional (without plastic) and the stabilized SMA mixtures were subjected to performance tests including Marshall Stability, tensile strength and compressive strength tests. Triaxial tests were also conducted with varying percentage bitumen by weight of mineral aggregate (6% to 8%) and by varying percentage plastic by weight of mix (6% to 12% with an increment of 1%). Plastic content of 10% by weight of bitumen is recommended for the improvement of the performance of Stone Mastic Asphalt mixtures. 10% plastic content gives an increase in the stability, split tensile strength and compressive strength of about 64%, 18% and 75% respectively compared to the conventional SMA mix. Triaxial test results show a 44% increase in cohesion and 3% decrease in angle of shearing resistance showing an increase in the shear strength. The drain down value decreases with an increase in plastic content and the value is only 0.09 % at 10% plastic content and proves to be an effective stabilizing additive in SMA mixtures
Resumo:
The increase in traffic growth and maintenance expenditures demands the urgent need for building better, long-lasting, and more efficient roads preventing or minimizing bituminous pavement distresses. Many of the principal distresses in pavements initiate or increase in severity due to the presence of water. In Kerala highways, where traditional dense graded mixtures are used for the surface courses, major distress is due to moisture induced damages. The Stone Matrix Asphalt (SMA) mixtures provide a durable surface course. Proven field performance of test track at Delhi recommends Stone Matrix Asphalt as a right choice to sustain severe climatic and heavy traffic conditions. But the concept of SMA in India is not so popularized and its application is very limited mainly due to the lack of proper specifications. This research is an attempt to study the influence of additives on the characteristics of SMA mixtures and to propose an ideal surface course for the pavements. The additives used for this investigation are coir, sisal, banana fibres (natural fibres), waste plastics (waste material) and polypropylene (polymer). A preliminary investigation is conducted to characterize the materials used in this study. Marshall test is conducted for optimizing the SMA mixtures (Control mixture-without additives and Stabilized mixtures with additives). Indirect tensile strength tests, compression strength tests, triaxial strength tests and drain down sensitivity tests are conducted to study the engineering properties of stabilized mixtures. The comparison of the performance of all stabilized mixtures with the control mixture and among themselves are carried out. A statistical analysis (SPSS package Ver.16) is performed to establish the findings of this study
Resumo:
In Kerala highways, where traditional dense graded mixtures are used for the surface courses, major distress is due to moisture induced damages. Development of stabilized Stone Matrix Asphalt (SMA) mixtures for improved pavement performance has been the focus of research all over the world for the past few decades. Many successful attempts are made to stabilize SMA mixtures with synthetic fibres and polymers. India, being an agricultural economy produces fairly huge quantity of natural fibres such as coconut, sisal, banana, sugar cane, jute etc.. Now- a -days the disposal of waste plastics is a major concern for an eco- friendly sustainable environment. This paper focuses on the influence of additives like coir, sisal, banana fibres (natural fibres), waste plastics (waste material) and polypropylene (polymer) on the drain down characteristics of SMA mixtures. A preliminary investigation is conducted to characterize the materials used in this study. Drain down sensitivity tests are conducted to study the bleeding phenomena and drain down of SMA mixtures. Based on the drain down characteristics of the various stabilized mixtures it is inferred that the optimum fibre content is 0.3% by weight of mixture for all fibre mixtures irrespective of the type of fibre. For waste plastics and polypropylene stabilized SMA mixtures, the optimum additive contents are respectively 7% and 5% by weight of mixture. Due to the absorptive nature of fibres, fibre stabilizers are found to be more effective in reducing the drain down of the SMA mixture. The drain values for the waste plastics mix is within the required specification range. The coir fibre additive is the best among the fibres investigated. Sisal and banana fibre mixtures showed almost the same characteristics on stabilization.
Resumo:
"January 1996"--Cover.
Resumo:
A crescente necessidade de reabilitação de pavimentos rodoviários tem conduzido ao aumento dos materiais resultantes das intervenções e ao consumo de quantidades significativas de energia e de novos materiais. Umas das formas de reduzir o consumo de energia decorrente da execução de trabalhos de reabilitação, e consequentemente a emissão de gases poluentes associada, é a produção de Misturas Betuminosas Temperadas. Estas são produzidas a temperaturas inferiores a 140ºC, o que permite poupar energia em relação às fabricadas a quente a uma temperatura superior a 140ºC. Por outro lado, a adição de Misturas Betuminosas Recuperadas (MBR) na produção de novas misturas, em substituição de parte dos agregados naturais e do betume novo, contribui para a diminuição do consumo de novos materiais, o que constitui uma prática ambientalmente sustentável e economicamente vantajosa. Reunindo os aspetos referidos no fabrico de misturas Stone Mastic Asphalt (SMA), caracterizadas pela sua elevada durabilidade e baixo custo de manutenção ao longo do seu ciclo de vida, pode obter-se uma mistura com inúmeras vantagens do ponto de vista económico e ambiental, destacando-se a redução do consumo e do custo de matérias-primas naturais, a redução do volume de resíduos a transportar a vazadouro, a redução do consumo de energia e a redução dos custos na manutenção e reabilitação dos pavimentos. Ao longo deste trabalho, descrevem-se as diversas tecnologias usadas para produzir misturas betuminosas temperadas, caracterizam-se as misturas do tipo Stone Mastic Asphalt, e mencionam-se os aspetos mais relevantes na incorporação de MBR na produção de novas misturas. Por último, foram realizados estudos experimentais com o intuito de investigar as propriedades volumétricas e o comportamento mecânico de misturas temperadas do tipo SMA com incorporação de MBR, contribuindo para o desenvolvimento deste tipo de misturas não tradicionais, com o objetivo de promover a sua utilização futura em trabalhos de pavimentação rodoviária.
Resumo:
This thesis evaluates the rheological behaviour of asphalt mixtures and the corresponding extracted binders from the mixtures containing different amounts of Reclaimed Asphalt (RA). Generally, the use of RA is limited to certain amounts. The study materials are Stone Mastic Asphalts including a control sample with 0% RA, and other samples with RA rates of 30%, 60% and 100%. Another set of studied mixtures are Asphalt Concretes (AC) types with again a control mix having 0% RA rate and the other mixtures designs containing 30%, 60% and 90% of reclaimed asphalt which also contain additives. In addition to the bitumen samples extracted from asphalt mixes, there are bitumen samples directly extracted from the original RA. To characterize the viscoelastic behaviour of the binders, Dynamic Shear Rheometer (DSR) tests were conducted on bitumen specimens. The resulting influence of the RA content in the bituminous binders are illustrated through master curves, black diagrams and Cole-Cole plots with regressing these experimental data by the application of the analogical 2S2P1D and the analytical CA model. The advantage of the CA model is in its limited number of parameters and thus is a simple model to use. The 2S2P1D model is an analogical rheological model for the prediction of the linear viscoelastic properties of both asphalt binders and mixtures. In order to study the influence of RA on mixtures, the Indirect Tensile Test (ITT) has been conducted. The master curves of different mixture samples are evaluated by regressing the test data points to a sigmoidal function and subsequently by comparing the master curves, the influence of RA materials is studied. The thesis also focusses on the applicability and also differences of CA model and 2S2P1D model for bitumen samples and the sigmoid function for the mixtures and presents the influence of the RA rate on the investigated model parameters.
Resumo:
Maintenance planning of road pavement requires reliable estimates of roads’ lifetimes. In determining the lifetime of a road, this study combines maintenance activities and road condition measurements. The scope of the paper is to estimate lifetimes of road pavements in Sweden with time to event analysis. The model used includes effects of pavement type, road type, bearing capacity, road width, speed limit, stone size and climate zone, where the model is stratified according to traffic load. Among the nine analyzed pavement types, stone mastic had the longest expected lifetime, 32 percent longer than asphalt concrete. Among road types, ordinary roads with cable barriers had 30 percent shorter lifetime than ordinary roads. Increased speed lowered the lifetime, while increased stone size (up to 20 mm) and increased road width lengthened the lifetime. The results are of importance for life cycle cost analysis and road management.
Resumo:
Lo Stone Matrix Asphalt (SMA) è un tipo di miscela chiusa costituita da uno scheletro litico di aggregato grosso, assortito in modo tale da ottenere una distribuzione granulometrica indicata con il termine gap-graded, e da un mastice, con funzione riempitiva, ottenuto dalla miscelazione di bitume, filler ed additivi stabilizzanti. In ambito di progettazione delle miscele per conglomerati bituminosi sta assumendo sempre più importanza l’utilizzo di materiali derivanti dalla frantumazione degli Pneumatici Fuori Uso, quali granulato e polverino di gomma. Quest’ultimo può essere impiegato come valida alternativa alla modifica polimerica del bitume garantendo maggiori prestazioni in termini di resistenza all’ormaiamento, a fatica e durabilità, con un conseguente contenimento dei costi di manutenzione della sovrastruttura nel medio e lungo periodo. Il presente studio è stato condotto con lo scopo di valutare le prestazioni meccaniche che una miscela di conglomerato bituminoso può esplicare a seguito della sua mescolazione con il polverino di gomma. In particolare, è stata impiegata una miscela bituminosa di tipo SMA che, data la sua composizione interna, conferisce allo strato di usura della pavimentazione ottime qualità soprattutto in termini di resistenza alle sollecitazioni, durabilità, fonoassorbenza e macrotessitura superficiale. Al fine di rendere più esaustiva la fase sperimentale, sono state messe a confronto due miscele di tipo SMA differenti tra loro per l’aggiunta del polverino di gomma. I dati ottenuti e le considerazioni effettuate al termine della fase sperimentale hanno permesso di affermare che la miscela indagata possiede proprietà meccaniche idonee per essere impiegata nella realizzazione di nuove infrastrutture o nella manutenzione delle pavimentazioni esistenti.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
The morphology of asphalt mixture can be defined as a set of parameters describing the geometrical characteristics of its constituent materials, their relative proportions as well as spatial arrangement in the mixture. The present study is carried out to investigate the effect of the morphology on its meso- and macro-mechanical response. An analysis approach is used for the meso-structural characterisation based on the X-ray computed tomography (CT) data. Image processing techniques are used to systematically vary the internal structure to obtain different morphology structures. A morphology framework is used to characterise the average mastic coating thickness around the main load carrying structure in the structures. The uniaxial tension simulation shows that the mixtures with the lowest coating thickness exhibit better inter-particle interaction with more continuous load distribution chains between adjacent aggregate particles, less stress concentrations and less strain localisation in the mastic phase.
Resumo:
In Sweden, during recent years, a new type of mixing protocol has been applied, in which the order of mixing is changed from the conventional method. Improved workability and diminished mixing and compaction energy needs have been important drivers for this. Considering that it is the mastic phase, which is modified by changing the mixing order, it provides an interesting case study for explaining the mechanisms of workability in connection with the mastic phase. To do so, an analytical viscosity framework was combined with a mixture morphology framework to upscale to the mixing level and tribology principles to explain the interaction between the mastic and the aggregates. From the mastic viscosity protocol, it was found that the mixing order significantly affects the resulting mastic viscosity. To analyse the effect of this on the workability and resulting mixture performance, X-ray computed tomography was used to analyse mixtures produced by the two different mixing sequences. Mechanical testing was utilised to determine the long-term mechanical performance. In this part of the study, mastic viscosity as a function of particle concentration and distribution was directly coupled to improved mixture workability and enhanced long-term performance.