984 resultados para stochastic gradient algorithm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a general procedure for solving incomplete data estimation problems. The procedure can be used to find the maximum likelihood estimate or to solve estimating equations in difficult cases such as estimation with the censored or truncated regression model, the nonlinear structural measurement error model, and the random effects model. The procedure is based on the general principle of stochastic approximation and the Markov chain Monte-Carlo method. Applying the theory on adaptive algorithms, we derive conditions under which the proposed procedure converges. Simulation studies also indicate that the proposed procedure consistently converges to the maximum likelihood estimate for the structural measurement error logistic regression model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In cooperative communication networks, owing to the nodes' arbitrary geographical locations and individual oscillators, the system is fundamentally asynchronous. This will damage some of the key properties of the space-time codes and can lead to substantial performance degradation. In this paper, we study the design of linear dispersion codes (LDCs) for such asynchronous cooperative communication networks. Firstly, the concept of conventional LDCs is extended to the delay-tolerant version and new design criteria are discussed. Then we propose a new design method to yield delay-tolerant LDCs that reach the optimal Jensen's upper bound on ergodic capacity as well as minimum average pairwise error probability. The proposed design employs stochastic gradient algorithm to approach a local optimum. Moreover, it is improved by using simulated annealing type optimization to increase the likelihood of the global optimum. The proposed method allows for flexible number of nodes, receive antennas, modulated symbols and flexible length of codewords. Simulation results confirm the performance of the newly-proposed delay-tolerant LDCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stochastic approximation methods for stochastic optimization are considered. Reviewed the main methods of stochastic approximation: stochastic quasi-gradient algorithm, Kiefer-Wolfowitz algorithm and adaptive rules for them, simultaneous perturbation stochastic approximation (SPSA) algorithm. Suggested the model and the solution of the retailer's profit optimization problem and considered an application of the SQG-algorithm for the optimization problems with objective functions given in the form of ordinary differential equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Searching for the optimum tap-length that best balances the complexity and steady-state performance of an adaptive filter has attracted attention recently. Among existing algorithms that can be found in the literature, two of which, namely the segmented filter (SF) and gradient descent (GD) algorithms, are of particular interest as they can search for the optimum tap-length quickly. In this paper, at first, we carefully compare the SF and GD algorithms and show that the two algorithms are equivalent in performance under some constraints, but each has advantages/disadvantages relative to the other. Then, we propose an improved variable tap-length algorithm using the concept of the pseudo fractional tap-length (FT). Updating the tap-length with instantaneous errors in a style similar to that used in the stochastic gradient [or least mean squares (LMS)] algorithm, the proposed FT algorithm not only retains the advantages from both the SF and the GD algorithms but also has significantly less complexity than existing algorithms. Both performance analysis and numerical simulations are given to verify the new proposed algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed network utility maximization (NUM) is receiving increasing interests for cross-layer optimization problems in multihop wireless networks. Traditional distributed NUM algorithms rely heavily on feedback information between different network elements, such as traffic sources and routers. Because of the distinct features of multihop wireless networks such as time-varying channels and dynamic network topology, the feedback information is usually inaccurate, which represents as a major obstacle for distributed NUM application to wireless networks. The questions to be answered include if distributed NUM algorithm can converge with inaccurate feedback and how to design effective distributed NUM algorithm for wireless networks. In this paper, we first use the infinitesimal perturbation analysis technique to provide an unbiased gradient estimation on the aggregate rate of traffic sources at the routers based on locally available information. On the basis of that, we propose a stochastic approximation algorithm to solve the distributed NUM problem with inaccurate feedback. We then prove that the proposed algorithm can converge to the optimum solution of distributed NUM with perfect feedback under certain conditions. The proposed algorithm is applied to the joint rate and media access control problem for wireless networks. Numerical results demonstrate the convergence of the proposed algorithm. © 2013 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed network utility maximization (NUM) is receiving increasing interests for cross-layer optimization problems in multihop wireless networks. Traditional distributed NUM algorithms rely heavily on feedback information between different network elements, such as traffic sources and routers. Because of the distinct features of multihop wireless networks such as time-varying channels and dynamic network topology, the feedback information is usually inaccurate, which represents as a major obstacle for distributed NUM application to wireless networks. The questions to be answered include if distributed NUM algorithm can converge with inaccurate feedback and how to design effective distributed NUM algorithm for wireless networks. In this paper, we first use the infinitesimal perturbation analysis technique to provide an unbiased gradient estimation on the aggregate rate of traffic sources at the routers based on locally available information. On the basis of that, we propose a stochastic approximation algorithm to solve the distributed NUM problem with inaccurate feedback. We then prove that the proposed algorithm can converge to the optimum solution of distributed NUM with perfect feedback under certain conditions. The proposed algorithm is applied to the joint rate and media access control problem for wireless networks. Numerical results demonstrate the convergence of the proposed algorithm. © 2013 John Wiley & Sons, Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

5th. European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008) 8th. World Congress on Computational Mechanics (WCCM8)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Submitted in partial fulfillment for the Requirements for the Degree of PhD in Mathematics, in the Speciality of Statistics in the Faculdade de Ciências e Tecnologia

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract : This work is concerned with the development and application of novel unsupervised learning methods, having in mind two target applications: the analysis of forensic case data and the classification of remote sensing images. First, a method based on a symbolic optimization of the inter-sample distance measure is proposed to improve the flexibility of spectral clustering algorithms, and applied to the problem of forensic case data. This distance is optimized using a loss function related to the preservation of neighborhood structure between the input space and the space of principal components, and solutions are found using genetic programming. Results are compared to a variety of state-of--the-art clustering algorithms. Subsequently, a new large-scale clustering method based on a joint optimization of feature extraction and classification is proposed and applied to various databases, including two hyperspectral remote sensing images. The algorithm makes uses of a functional model (e.g., a neural network) for clustering which is trained by stochastic gradient descent. Results indicate that such a technique can easily scale to huge databases, can avoid the so-called out-of-sample problem, and can compete with or even outperform existing clustering algorithms on both artificial data and real remote sensing images. This is verified on small databases as well as very large problems. Résumé : Ce travail de recherche porte sur le développement et l'application de méthodes d'apprentissage dites non supervisées. Les applications visées par ces méthodes sont l'analyse de données forensiques et la classification d'images hyperspectrales en télédétection. Dans un premier temps, une méthodologie de classification non supervisée fondée sur l'optimisation symbolique d'une mesure de distance inter-échantillons est proposée. Cette mesure est obtenue en optimisant une fonction de coût reliée à la préservation de la structure de voisinage d'un point entre l'espace des variables initiales et l'espace des composantes principales. Cette méthode est appliquée à l'analyse de données forensiques et comparée à un éventail de méthodes déjà existantes. En second lieu, une méthode fondée sur une optimisation conjointe des tâches de sélection de variables et de classification est implémentée dans un réseau de neurones et appliquée à diverses bases de données, dont deux images hyperspectrales. Le réseau de neurones est entraîné à l'aide d'un algorithme de gradient stochastique, ce qui rend cette technique applicable à des images de très haute résolution. Les résultats de l'application de cette dernière montrent que l'utilisation d'une telle technique permet de classifier de très grandes bases de données sans difficulté et donne des résultats avantageusement comparables aux méthodes existantes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Practical Stochastic Model is a simple and robust method to describe coupled chemical reactions. The connection between this stochastic method and a deterministic method was initially established to understand how the parameters and variables that describe the concentration in both methods were related. It was necessary to define two main concepts to make this connection: the filling of compartments or dilutions and the rate of reaction enhancement. The parameters, variables, and the time of the stochastic methods were scaled with the size of the compartment and were compared with a deterministic method. The deterministic approach was employed as an initial reference to achieve a consistent stochastic result. Finally, an independent robust stochastic method was obtained. This method could be compared with the Stochastic Simulation Algorithm developed by Gillespie, 1977. The Practical Stochastic Model produced absolute values that were essential to describe non-linear chemical reactions with a simple structure, and allowed for a correct description of the chemical kinetics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

L’apprentissage supervisé de réseaux hiérarchiques à grande échelle connaît présentement un succès fulgurant. Malgré cette effervescence, l’apprentissage non-supervisé représente toujours, selon plusieurs chercheurs, un élément clé de l’Intelligence Artificielle, où les agents doivent apprendre à partir d’un nombre potentiellement limité de données. Cette thèse s’inscrit dans cette pensée et aborde divers sujets de recherche liés au problème d’estimation de densité par l’entremise des machines de Boltzmann (BM), modèles graphiques probabilistes au coeur de l’apprentissage profond. Nos contributions touchent les domaines de l’échantillonnage, l’estimation de fonctions de partition, l’optimisation ainsi que l’apprentissage de représentations invariantes. Cette thèse débute par l’exposition d’un nouvel algorithme d'échantillonnage adaptatif, qui ajuste (de fa ̧con automatique) la température des chaînes de Markov sous simulation, afin de maintenir une vitesse de convergence élevée tout au long de l’apprentissage. Lorsqu’utilisé dans le contexte de l’apprentissage par maximum de vraisemblance stochastique (SML), notre algorithme engendre une robustesse accrue face à la sélection du taux d’apprentissage, ainsi qu’une meilleure vitesse de convergence. Nos résultats sont présent ́es dans le domaine des BMs, mais la méthode est générale et applicable à l’apprentissage de tout modèle probabiliste exploitant l’échantillonnage par chaînes de Markov. Tandis que le gradient du maximum de vraisemblance peut-être approximé par échantillonnage, l’évaluation de la log-vraisemblance nécessite un estimé de la fonction de partition. Contrairement aux approches traditionnelles qui considèrent un modèle donné comme une boîte noire, nous proposons plutôt d’exploiter la dynamique de l’apprentissage en estimant les changements successifs de log-partition encourus à chaque mise à jour des paramètres. Le problème d’estimation est reformulé comme un problème d’inférence similaire au filtre de Kalman, mais sur un graphe bi-dimensionnel, où les dimensions correspondent aux axes du temps et au paramètre de température. Sur le thème de l’optimisation, nous présentons également un algorithme permettant d’appliquer, de manière efficace, le gradient naturel à des machines de Boltzmann comportant des milliers d’unités. Jusqu’à présent, son adoption était limitée par son haut coût computationel ainsi que sa demande en mémoire. Notre algorithme, Metric-Free Natural Gradient (MFNG), permet d’éviter le calcul explicite de la matrice d’information de Fisher (et son inverse) en exploitant un solveur linéaire combiné à un produit matrice-vecteur efficace. L’algorithme est prometteur: en terme du nombre d’évaluations de fonctions, MFNG converge plus rapidement que SML. Son implémentation demeure malheureusement inefficace en temps de calcul. Ces travaux explorent également les mécanismes sous-jacents à l’apprentissage de représentations invariantes. À cette fin, nous utilisons la famille de machines de Boltzmann restreintes “spike & slab” (ssRBM), que nous modifions afin de pouvoir modéliser des distributions binaires et parcimonieuses. Les variables latentes binaires de la ssRBM peuvent être rendues invariantes à un sous-espace vectoriel, en associant à chacune d’elles, un vecteur de variables latentes continues (dénommées “slabs”). Ceci se traduit par une invariance accrue au niveau de la représentation et un meilleur taux de classification lorsque peu de données étiquetées sont disponibles. Nous terminons cette thèse sur un sujet ambitieux: l’apprentissage de représentations pouvant séparer les facteurs de variations présents dans le signal d’entrée. Nous proposons une solution à base de ssRBM bilinéaire (avec deux groupes de facteurs latents) et formulons le problème comme l’un de “pooling” dans des sous-espaces vectoriels complémentaires.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The registration of pre-operative volumetric datasets to intra- operative two-dimensional images provides an improved way of verifying patient position and medical instrument loca- tion. In applications from orthopedics to neurosurgery, it has a great value in maintaining up-to-date information about changes due to intervention. We propose a mutual information- based registration algorithm to establish the proper align- ment. For optimization purposes, we compare the perfor- mance of the non-gradient Powell method and two slightly di erent versions of a stochastic gradient ascent strategy: one using a sparsely sampled histogramming approach and the other Parzen windowing to carry out probability density approximation. Our main contribution lies in adopting the stochastic ap- proximation scheme successfully applied in 3D-3D registra- tion problems to the 2D-3D scenario, which obviates the need for the generation of full DRRs at each iteration of pose op- timization. This facilitates a considerable savings in compu- tation expense. We also introduce a new probability density estimator for image intensities via sparse histogramming, de- rive gradient estimates for the density measures required by the maximization procedure and introduce the framework for a multiresolution strategy to the problem. Registration results are presented on uoroscopy and CT datasets of a plastic pelvis and a real skull, and on a high-resolution CT- derived simulated dataset of a real skull, a plastic skull, a plastic pelvis and a plastic lumbar spine segment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We describe a method for modeling object classes (such as faces) using 2D example images and an algorithm for matching a model to a novel image. The object class models are "learned'' from example images that we call prototypes. In addition to the images, the pixelwise correspondences between a reference prototype and each of the other prototypes must also be provided. Thus a model consists of a linear combination of prototypical shapes and textures. A stochastic gradient descent algorithm is used to match a model to a novel image by minimizing the error between the model and the novel image. Example models are shown as well as example matches to novel images. The robustness of the matching algorithm is also evaluated. The technique can be used for a number of applications including the computation of correspondence between novel images of a certain known class, object recognition, image synthesis and image compression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In cooperative communication networks, owing to the nodes' arbitrary geographical locations and individual oscillators, the system is fundamentally asynchronous. Such a timing mismatch may cause rank deficiency of the conventional space-time codes and, thus, performance degradation. One efficient way to overcome such an issue is the delay-tolerant space-time codes (DT-STCs). The existing DT-STCs are designed assuming that the transmitter has no knowledge about the channels. In this paper, we show how the performance of DT-STCs can be improved by utilizing some feedback information. A general framework for designing DT-STC with limited feedback is first proposed, allowing for flexible system parameters such as the number of transmit/receive antennas, modulated symbols, and the length of codewords. Then, a new design method is proposed by combining Lloyd's algorithm and the stochastic gradient-descent algorithm to obtain optimal codebook of STCs, particularly for systems with linear minimum-mean-square-error receiver. Finally, simulation results confirm the performance of the newly designed DT-STCs with limited feedback.