884 resultados para stochastic dynamic systems
Resumo:
In recent work we have developed a novel variational inference method for partially observed systems governed by stochastic differential equations. In this paper we provide a comparison of the Variational Gaussian Process Smoother with an exact solution computed using a Hybrid Monte Carlo approach to path sampling, applied to a stochastic double well potential model. It is demonstrated that the variational smoother provides us a very accurate estimate of mean path while conditional variance is slightly underestimated. We conclude with some remarks as to the advantages and disadvantages of the variational smoother. © 2008 Springer Science + Business Media LLC.
Resumo:
This paper considers the general problem of Feasible Generalized Least Squares Instrumental Variables (FG LS IV) estimation using optimal instruments. First we summarize the sufficient conditions for the FG LS IV estimator to be asymptotic ally equivalent to an optimal G LS IV estimator. Then we specialize to stationary dynamic systems with stationary VAR errors, and use the sufficient conditions to derive new moment conditions for these models. These moment conditions produce useful IVs from the lagged endogenous variables, despite the correlation between errors and endogenous variables. This use of the information contained in the lagged endogenous variables expands the class of IV estimators under consideration and there by potentially improves both asymptotic and small-sample efficiency of the optimal IV estimator in the class. Some Monte Carlo experiments compare the new methods with those of Hatanaka [1976]. For the DG P used in the Monte Carlo experiments, asymptotic efficiency is strictly improved by the new IVs, and experimental small-sample efficiency is improved as well.
Resumo:
The study of random dynamic systems usually requires the definition of an ensemble of structures and the solution of the eigenproblem for each member of the ensemble. If the process is carried out using a conventional numerical approach, the computational cost becomes prohibitive for complex systems. In this work, an alternative numerical method is proposed. The results for the response statistics are compared with values obtained from a detailed stochastic FE analysis of plates. The proposed method seems to capture the statistical behaviour of the response with a reduced computational cost.
Resumo:
The main theme of research of this project concerns the study of neutral networks to control uncertain and non-linear control systems. This involves the control of continuous time, discrete time, hybrid and stochastic systems with input, state or output constraints by ensuring good performances. A great part of this project is devoted to the opening of frontiers between several mathematical and engineering approaches in order to tackle complex but very common non-linear control problems. The objectives are: 1. Design and develop procedures for neutral network enhanced self-tuning adaptive non-linear control systems; 2. To design, as a general procedure, neural network generalised minimum variance self-tuning controller for non-linear dynamic plants (Integration of neural network mapping with generalised minimum variance self-tuning controller strategies); 3. To develop a software package to evaluate control system performances using Matlab, Simulink and Neural Network toolbox. An adaptive control algorithm utilising a recurrent network as a model of a partial unknown non-linear plant with unmeasurable state is proposed. Appropriately, it appears that structured recurrent neural networks can provide conveniently parameterised dynamic models for many non-linear systems for use in adaptive control. Properties of static neural networks, which enabled successful design of stable adaptive control in the state feedback case, are also identified. A survey of the existing results is presented which puts them in a systematic framework showing their relation to classical self-tuning adaptive control application of neural control to a SISO/MIMO control. Simulation results demonstrate that the self-tuning design methods may be practically applicable to a reasonably large class of unknown linear and non-linear dynamic control systems.
Resumo:
Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Kárnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained.
Resumo:
This paper considers the question of designing a fully image based visual servo control for a dynamic system. The work is motivated by the ongoing development of image based visual servo control of small aerial robotic vehicles. The observed targets considered are coloured blobs on a flat surface to which the normal direction is known. The theoretical framework is directly applicable to the case of markings on a horizontal floor or landing field. The image features used are a first order spherical moment for position and an image flow measurement for velocity. A fully non-linear adaptive control design is provided that ensures global stability of the closed-loop system. © 2005 IEEE.
Resumo:
Increases in functionality, power and intelligence of modern engineered systems led to complex systems with a large number of interconnected dynamic subsystems. In such machines, faults in one subsystem can cascade and affect the behavior of numerous other subsystems. This complicates the traditional fault monitoring procedures because of the need to train models of the faults that the monitoring system needs to detect and recognize. Unavoidable design defects, quality variations and different usage patterns make it infeasible to foresee all possible faults, resulting in limited diagnostic coverage that can only deal with previously anticipated and modeled failures. This leads to missed detections and costly blind swapping of acceptable components because of one’s inability to accurately isolate the source of previously unseen anomalies. To circumvent these difficulties, a new paradigm for diagnostic systems is proposed and discussed in this paper. Its feasibility is demonstrated through application examples in automotive engine diagnostics.
Resumo:
The fastest-growing segment of jobs in the creative sector are in those firms that provide creative services to other sectors (Hearn, Goldsmith, Bridgstock, Rodgers 2014, this volume; Cunningham 2014, this volume). There are also a large number of Creative Services (Architecture and Design, Advertising and Marketing, Software and Digital Content occupations) workers embedded in organizations in other industry sectors (Cunningham and Higgs 2009). Ben Goldsmith (2014, this volume) shows, for example, that the Financial Services sector is the largest employer of digital creative talent in Australia. But why should this be? We argue it is because ‘knowledge-based intangibles are increasingly the source of value creation and hence of sustainable competitive advantage (Mudambi 2008, 186). This value creation occurs primarily at the research and development (R and D) and the marketing ends of the supply chain. Both of these areas require strong creative capabilities in order to design for, and to persuade, consumers. It is no surprise that Jess Rodgers (2014, this volume), in a study of Australia’s Manufacturing sector, found designers and advertising and marketing occupations to be the most numerous creative occupations. Greg Hearn and Ruth Bridgstock (2013, forthcoming) suggest ‘the creative heart of the creative economy […] is the social and organisational routines that manage the generation of cultural novelty, both tacit and codified, internal and external, and [cultural novelty’s] combination with other knowledges […] produce and capture value’. 2 Moreover, the main “social and organisational routine” is usually a team (for example, Grabher 2002; 2004).
Resumo:
This paper examines the properties of various approximation methods for solving stochastic dynamic programs in structural estimation problems. The problem addressed is evaluating the expected value of the maximum of available choices. The paper shows that approximating this by the maximum of expected values frequently has poor properties. It also shows that choosing a convenient distributional assumptions for the errors and then solving exactly conditional on the distributional assumption leads to small approximation errors even if the distribution is misspecified. © 1997 Cambridge University Press.
Resumo:
A novel gray-box neural network model (GBNNM), including multi-layer perception (MLP) neural network (NN) and integrators, is proposed for a model identification and fault estimation (MIFE) scheme. With the GBNNM, both the nonlinearity and dynamics of a class of nonlinear dynamic systems can be approximated. Unlike previous NN-based model identification methods, the GBNNM directly inherits system dynamics and separately models system nonlinearities. This model corresponds well with the object system and is easy to build. The GBNNM is embedded online as a normal model reference to obtain the quantitative residual between the object system output and the GBNNM output. This residual can accurately indicate the fault offset value, so it is suitable for differing fault severities. To further estimate the fault parameters (FPs), an improved extended state observer (ESO) using the same NNs (IESONN) from the GBNNM is proposed to avoid requiring the knowledge of ESO nonlinearity. Then, the proposed MIFE scheme is applied for reaction wheels (RW) in a satellite attitude control system (SACS). The scheme using the GBNNM is compared with other NNs in the same fault scenario, and several partial loss of effect (LOE) faults with different severities are considered to validate the effectiveness of the FP estimation and its superiority.
Resumo:
Stochastic structural systems having a stochastic distribution of material properties and stochastic external loadings in space are analysed when a crack of deterministic size is present. The material properties and external loadings are considered to constitute independent, two-dimensional, univariate, real, homogeneous stochastic fields. The stochastic fields are characterized by their means, variances, autocorrelation functions or the equivalent power spectral density functions, and scale fluctuations. The Young's modulus and Poisson's ratio are treated to be stochastic quantities. The external loading is treated to be a stochastic field in space. The energy release rate is derived using the method of virtual crack extension. The deterministic relationship is derived to represent the sensitivities of energy release rate with respect to both virtual crack extension and real system parameter fluctuations. Taylor series expansion is used and truncation is made to the first order. This leads to the determination of second-order properties of the output quantities to the first order. Using the linear perturbations about the mean values of the output quantities, the statistical information about the energy release rates, SIF and crack opening displacements are obtained. Both plane stress and plane strain cases are considered. The general expressions for the SIF in all the three fracture modes are derived and a more detailed analysis is conducted for a mode I situation. A numerical example is given.
Resumo:
Stochastic hybrid systems arise in numerous applications of systems with multiple models; e.g., air traffc management, flexible manufacturing systems, fault tolerant control systems etc. In a typical hybrid system, the state space is hybrid in the sense that some components take values in a Euclidean space, while some other components are discrete. In this paper we propose two stochastic hybrid models, both of which permit diffusion and hybrid jump. Such models are essential for studying air traffic management in a stochastic framework.
Resumo:
The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system (GSLS). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. Moreover, an identification method is proposed through the skeleton curves and the time-frequency filtering technique.