928 resultados para stimulus overlapping
Resumo:
O objetivo do estudo foi avaliar a formação de classes ordinais a partir do ensino de uma única sequência de estímulos sob controle da numerosidade. Participaram cinco crianças na faixa etária de 4 a 5 anos. Os estímulos foram formas abstratas referentes à numerosidade de 1 a 5. Usou-se um procedimento de ensino por sobreposição de estímulos. Todos os participantes alcançaram o critério de acerto na linha de base. Nos testes de transitividade e conectividade, os cincos participantes responderam prontamente. Houve generalização para duas novas classes ordinais. Nos testes de manutenção três participantes apresentaram responder consistente e um dos participantes respondeu parcialmente. Este estudo é uma contribuição para o estabelecimento de uma análise funcional da aprendizagem de repertórios numéricos.
Resumo:
Visual classification is the way we relate to different images in our environment as if they were the same, while relating differently to other collections of stimuli (e.g., human vs. animal faces). It is still not clear, however, how the brain forms such classes, especially when introduced with new or changing environments. To isolate a perception-based mechanism underlying class representation, we studied unsupervised classification of an incoming stream of simple images. Classification patterns were clearly affected by stimulus frequency distribution, although subjects were unaware of this distribution. There was a common bias to locate class centers near the most frequent stimuli and their boundaries near the least frequent stimuli. Responses were also faster for more frequent stimuli. Using a minimal, biologically based neural-network model, we demonstrate that a simple, self-organizing representation mechanism based on overlapping tuning curves and slow Hebbian learning suffices to ensure classification. Combined behavioral and theoretical results predict large tuning overlap, implicating posterior infero-temporal cortex as a possible site of classification.
Resumo:
Recent modelling studies (Hadjipapas et al. [2009]: Neuroimage 44:1290-1303) have shown that it may be possible to distinguish between different neuronal populations on the basis of their macroscopically measured (EEG/MEG) mean field. We set out to test whether the different orientation columns contributing to a signal at a specific cortical location could be identified based on the measured MEG signal. We used 1.5deg square, static, obliquely oriented grating stimuli to generate sustained gamma oscillations in a focal region of primary visual cortex. We then used multivariate classifier methods to predict the orientation (left or right oblique) of the stimuli based purely on the time-series data from this one location. Both the single trial evoked response (0-300 ms) and induced post-transient power spectra (300-2,300 ms, 20-70 Hz band) due to the different stimuli were classifiable significantly above chance in 11/12 and 10/12 datasets respectively. Interestingly, stimulus-specific information is preserved in the sustained part of the gamma oscillation, long after perception has occurred and all neuronal transients have decayed. Importantly, the classification of this induced oscillation was still possible even when the power spectra were rank-transformed showing that the different underlying networks give rise to different characteristic temporal signatures. © 2009 Wiley-Liss, Inc.
Resumo:
This action research examines the enhancement of visual communication within the architectural design studio through physical model making. „It is through physical model making that designers explore their conceptual ideas and develop the creation and understanding of space,‟ (Salama & Wilkinson 2007:126). This research supplements Crowther‟s findings extending the understanding of visual dialogue to include physical models. „Architecture Design 8‟ is the final core design unit at QUT in the fourth year of the Bachelor of Design Architecture. At this stage it is essential that students have the ability to communicate their ideas in a comprehensive manner, relying on a combination of skill sets including drawing, physical model making, and computer modeling. Observations within this research indicates that students did not integrate the combination of the skill sets in the design process through the first half of the semester by focusing primarily on drawing and computer modeling. The challenge was to promote deeper learning through physical model making. This research addresses one of the primary reasons for the lack of physical model making, which was the limited assessment emphasis on the physical models. The unit was modified midway through the semester to better correlate the lecture theory with studio activities by incorporating a series of model making exercises conducted during the studio time. The outcome of each exercise was assessed. Tutors were surveyed regarding the model making activities and a focus group was conducted to obtain formal feedback from students. Students and tutors recognised the added value in communicating design ideas through physical forms and model making. The studio environment was invigorated by the enhanced learning outcomes of the students who participated in the model making exercises. The conclusions of this research will guide the structure of the upcoming iteration of the fourth year design unit.
Resumo:
Objective: We explore how accurately and quickly nurses can identify melodic medical equipment alarms when no mnemonics are used, when alarms may overlap, and when concurrent tasks are performed. Background: The international standard IEC 60601-1-8 (International Electrotechnical Commission, 2005) has proposed simple melodies to distinguish seven alarm sources. Previous studies with nonmedical participants reveal poor learning of melodic alarms and persistent confusions between some of them. The effects of domain expertise, concurrent tasks, and alarm overlaps are unknown. Method: Fourteen intensive care and general medical unit nurses learned the melodic alarms without mnemonics in two sessions on separate days. In the second half of Day 2 the nurses identified single alarms or pairs of alarms played in sequential, partially overlapping, or nearly completely overlapping configurations. For half the experimental blocks nurses performed a concurrent mental arithmetic task. Results: Nurses' learning was poor and was no better than the learning of nonnurses in a previous study. Nurses showed the previously noted confusions between alarms. Overlapping alarms were exceptionally difficult to identify. The concurrent task affected response time but not accuracy. Conclusion: Because of a failure of auditory stream segregation, the melodic alarms cannot be discriminated when they overlap. Directives to sequence the sounding of alarms in medical electrical equipment must be strictly adhered to, or the alarms must redesigned to support better auditory streaming. Application: Actual or potential uses of this research include the implementation of IEC 60601-1-8 alarms in medical electrical equipment.
Resumo:
The question as to whether poser race affects the happy categorization advantage, the faster categorization of happy than of negative emotional expressions, has been answered inconsistently. Hugenberg (2005) found the happy categorization advantage only for own race faces whereas faster categorization of angry expressions was evident for other race faces. Kubota and Ito (2007) found a happy categorization advantage for both own race and other race faces. These results have vastly different implications for understanding the influence of race cues on the processing of emotional expressions. The current study replicates the results of both prior studies and indicates that face type (computer-generated vs. photographic), presentation duration, and especially stimulus set size influence the happy categorization advantage as well as the moderating effect of poser race.
Resumo:
The bed nucleus of the stria terminalis (BNST) is believed to be a critical relay between the central nucleus of the amygdala (CE) and the paraventricular nucleus of the hypothalamus in the control of hypothalamic–pituitary– adrenal (HPA) responses elicited by conditioned fear stimuli. If correct, lesions of CE or BNST should block expression of HPA responses elicited by either a specific conditioned fear cue or a conditioned context. To test this, rats were subjected to cued (tone) or contextual classical fear conditioning. Two days later, electrolytic or sham lesions were placed in CE or BNST. After 5 days, the rats were tested for both behavioral (freezing) and neuroendocrine (corticosterone) responses to tone or contextual cues. CE lesions attenuated conditioned freezing and corticosterone responses to both tone and con- text. In contrast, BNST lesions attenuated these responses to contextual but not tone stimuli. These results suggest CE is indeed an essential output of the amygdala for the expres- sion of conditioned fear responses, including HPA re- sponses, regardless of the nature of the conditioned stimu- lus. However, because lesions of BNST only affected behav- ioral and endocrine responses to contextual stimuli, the results do not support the notion that BNST is critical for HPA responses elicited by conditioned fear stimuli in general. Instead, the BNST may be essential specifically for contex- tual conditioned fear responses, including both behavioral and HPA responses, by virtue of its connections with the hippocampus, a structure essential to contextual condition- ing. The results are also not consistent with the hypothesis that BNST is only involved in unconditioned aspects of fear and anxiety.
Resumo:
Previous studies have found that the lateral posterior fusiform gyri respond more robustly to pictures of animals than pictures of manmade objects and suggested that these regions encode the visual properties characteristic of animals. We suggest that such effects actually reflect processing demands arising when items with similar representations must be finely discriminated. In a positron emission tomography (PET) study of category verification with colored photographs of animals and vehicles, there was robust animal-specific activation in the lateral posterior fusiform gyri when stimuli were categorized at an intermediate level of specificity (e.g., dog or car). However, when the same photographs were categorized at a more specific level (e.g., Labrador or BMW), these regions responded equally strongly to animals and vehicles. We conclude that the lateral posterior fusiform does not encode domain-specific representations of animals or visual properties characteristic of animals. Instead, these regions are strongly activated whenever an item must be discriminated from many close visual or semantic competitors. Apparent category effects arise because, at an intermediate level of specificity, animals have more visual and semantic competitors than do artifacts.
Resumo:
In the OHS field increasing use is being made of administrative penalties to enforce OHS legislation. Infringement notices (also known as penalty notices or on-the-spot fines) are used in several Australian jurisdictions and there are plans to introduce them in others. Overseas jurisdictions with some form of OHS administrative penalty include the United States, some Canadian provinces, and the system recently enacted in New Zealand. This article reviews empirical evidence and legal arguments about the use of infringement notices for enforcing OHS legislation. Key factors influencing the impact of these notices are discussed, including the monetary amounts of penalties, the nature of offences, the criteria and processes for issuing notices, and other implementation issues. There is a need for further empirical studies to determine the characteristics of infringement notice schemes that are most effective in motivating preventive action.
Resumo:
The characterisation of facial expression through landmark-based analysis methods such as FACEM (Pilowsky & Katsikitis, 1994) has a variety of uses in psychiatric and psychological research. In these systems, important structural relationships are extracted from images of facial expressions by the analysis of a pre-defined set of feature points. These relationship measures may then be used, for instance, to assess the degree of variability and similarity between different facial expressions of emotion. FaceXpress is a multimedia software suite that provides a generalised workbench for landmark-based facial emotion analysis and stimulus manipulation. It is a flexible tool that is designed to be specialised at runtime by the user. While FaceXpress has been used to implement the FACEM process, it can also be configured to support any other similar, arbitrary system for quantifying human facial emotion. FaceXpress also implements an integrated set of image processing tools and specialised tools for facial expression stimulus production including facial morphing routines and the generation of expression-representative line drawings from photographs.
Resumo:
The hippocampus is an anatomically distinct region of the medial temporal lobe that plays a critical role in the formation of declarative memories. Here we show that a computer simulation of simple compartmental cells organized with basic hippocampal connectivity is capable of producing stimulus intensity sensitive wide-band fluctuations of spectral power similar to that seen in real EEG. While previous computational models have been designed to assess the viability of the putative mechanisms of memory storage and retrieval, they have generally been too abstract to allow comparison with empirical data. Furthermore, while the anatomical connectivity and organization of the hippocampus is well defined, many questions regarding the mechanisms that mediate large-scale synaptic integration remain unanswered. For this reason we focus less on the specifics of changing synaptic weights and more on the population dynamics. Spectral power in four distinct frequency bands were derived from simulated field potentials of the computational model and found to depend on the intensity of a random input. The majority of power occurred in the lowest frequency band (3-6 Hz) and was greatest to the lowest intensity stimulus condition (1% maximal stimulus). In contrast, higher frequency bands ranging from 7-45 Hz show an increase in power directly related with an increase in stimulus intensity. This trend continues up to a stimulus level of 15% to 20% of the maximal input, above which power falls dramatically. These results suggest that the relative power of intrinsic network oscillations are dependent upon the level of activation and that above threshold levels all frequencies are damped, perhaps due to over activation of inhibitory interneurons.