981 resultados para stimulated emission cross-section-


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stimulated emission cross section σp for the 1060 nm transition of Nd3+ in lead borate and bismuth borate glasses has been determined from fluorescence measurements. The compositional dependence of σp, which has been evaluated using radiative transition probability, refractive index of the host glass, effective fluorescence linewidth, and position of the band, with PbO/Bi2O3 content is investigated. The σp values of the 1060 nm band of Nd3+ for lead borate and bismuth borate glasses are found to be in the range 2.6–5.7×10−20 cm2 at 298 K and 3.0–6.3×10−20 cm2 at 4.2 K. The σp values are comparatively large suggesting the possible utilization of these materials in laser applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fluorescence emission spectra of Cr:Yb:YAG crystal are measured and the effective stimulated emission cross section of the crystal are obtained from -80 degrees C to +80 degrees C. A linear temperature dependence between -80 degrees C and +80 degrees C is reported for the 1.03 mu m peak stimulated emission cross section of Cr:Yb:YAG crystal. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fluorescence emission spectra of Cr:Nd:YAG crystal are measured and the effective stimulated emission cross-section of the crystal is obtained from -80 to +80 degrees C. A linear temperature dependence between -80 and +80 degrees C is reported for the 1.064-mu m peak stimulated emission cross-section of Cr:Nd:YAG crystal. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of F- ions in Yb3+-doped tellurite glass systems on the emission cross-section and measured fluorescence lifetime are investigated. The results show that both the emission cross-section and the fluorescence lifetime of Yb3+ ions increase from 1.32 to 1.39 pm(2) and from 0.93 to 1.12 ms respectively with the increase of F- ions from 0 to 10 mol% and that such oxyfluoride tellurite glass system is a promising laser host matrix for high power generation. FT-IR spectra were used to analyze the effect of F- ions on the structure of tellurite glasses and the change of OH- groups in this glass system. Analysis demonstrates that the addition of fluoride decreases the symmetry of the structure of tellurite glasses resulting in increasing of the emission cross-section and removes the OH- groups resulting in increasing of the measured fluorescence lifetime of Yb3+ ions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of Nd3+-doped LaF3 nanoparticles with Nd3+ concentrations from 0.5 to 10 mol% were synthesized. The fluorescence intensity and lifetime of the nanoparticles at various Nd3+ doping concentration were investigated. The nanoparticles displayed strongest fluorescence intensity at 3 mol% Nd3+ concentration. Eighty-eight percentage quantum efficiency was obtained when the Nd3+ concentration was 0.5 mol%. Optical properties of nanoparticles were studied according to Judd-Ofelt theory. A larger emission cross-section, sigma(em), for F-4(3/2) -> I-4(11/2) transition of the Nd3+ ion was obtained as 3.21 x 10(-20) cm(2), which was two times of the currently reported value. The larger emission cross-section and strong fluorescence intensity demonstrate that these nanoparticles are promising materials for laser applications. (C) 2010 Published by Elsevier B. V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Broadband neat-infrared emission from transparent Ni2+-doped sodium aluminosilicate glass-cermaics is observed. The broad emission is centered at 1290 nm and covers the whole telecommunication wavelength region (1100-1700 nm) with full width at half maximum of about 340 nm. The observed infrared emission could be attributed to the T-3(2)(F) -> (3)A(2)(F) transition of octahedral Ni2+ ions that occupy high-field sites in nanocrystals. The product of the lifetime and the stimulated emission cross section is 2.15 x 10(-24) cm(2)s. It is suggested that Ni2+-doped sodium aluminosilicate glass ceramics have potential applications in tunable broadband light sources and broadband amplifiers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Absorption induced by electrochemically injected holes is studied in poly-9,9-dioctylfluorene (PFO) films. Injected charges form positive polarons which are delocalised over four fluorene units in the glassy phase and about seven fluorene units in its β-phase. Polaron absorption cross-sections at the 640 nm peak are similar to the published values of chemically reduced oligofluorenes in solution. The absorption cross-section of polaron in the β-phase at 470 nm is about eight times smaller than the stimulated emission cross-section derived from published data. This indicates that β-phase-rich PFO is an attractive candidate for a light-emitting layer in double-heterostructure organic laser diodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of host glass composition on the optical absorption and fluorescence spectra of Nd3+ has been studied in mixed alkali borate glasses of the type xNa(2)O-(30-x)K2O-69.5B(2)O(3)-0.5Nd(2)O(3) (X = 5,10,15,20 and 25). Various spectroscopic parameters such as Racah (E-1, E-2 and E-3), spin-orbit (xi(4f)) and configuration interaction (alpha, beta) parameters have been calculated. The Judd-Ofelt intensity parameters (Omega(lambda)) have been calculated and the radiative transition probabilities (A(rad)), radiative lifetimes (tau(r)), branching ratios (beta) and integrated absorption cross sections (Sigma) have been obtained for certain excited states of the Nd3+, ion and are discussed with respect to x. From the fluorescence spectra, the effective fluorescence line widths (Deltalambda(eff)) and stimulated emission cross sections (sigma(p)) have been obtained for the three transitions F-4(3/2) --> I-4(9/2), F-4(3/2) --> I-4(11/2) and F-4(3/2) --> I-4(13/2) of Nd3+. The stimulated emission cross section (sigma(p)) values are found to be in the range (2.0-4.8) x 10(-2)0 cm(2) and they are large enough to indicate that the mixed alkali borate glasses could be potential laser host materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eu3+-activated layered BiOCl phosphors were synthesized by the conventional solid-state method at relatively low temperature and shorter duration (400 degrees C for 1 h). All the samples were crystallized in the tetragonal structure with the space group P4/nmm (no. 129). Field emission scanning electron microscopy (FE-SEM) studies confirmed the plate-like morphology. Photoluminescence spectra exhibit characteristic luminescent D-5(0) -> F-7(J) (J = 0-4) intra-4f shell Eu3+ ion transitions. The electric dipole transition located at 620 nm (D-5(0) -> F-7(2)) was stronger than the magnetic dipole transition located at 594 nm (D-5(0) -> F-7(1)). The evaluated Commission International de l'Eclairage (CIE) color coordinates of Eu3+-activated BiOCl phosphors were close to the commercial Y2O3:Eu3+ and Y2O2S:Eu3+ red phosphors. Intensity parameters (Omega(2), Omega(4)) and various radiative properties such as transition probability (A(tot)), radiative lifetime (tau(rad)), stimulated emission cross-section (sigma(e)), gain bandwidth (sigma(e) x Delta lambda(eff)) and optical gain (sigma(e) x tau(rad)) were calculated using the Judd-Ofelt theory. The experimental decay curves of the D-5(0) level in Eu3+-activated BiOCl have a single exponential profile. In comparison with other Eu3+ doped materials, Eu3+-activated BiOCl phosphors have a long lifetime (tau(exp)), low non-radiative relaxation rate (W-NR), high quantum efficiency (eta) and better optical gain (sigma(e) x tau(rad)). The determined radiative properties revealed the usefulness of Eu3+-activated BiOCl in developing red lasers as well as optical display devices. Further, these samples showed efficient photocatalytic activity for the degradation of rhodamine B (RhB) dye under visible light irradiation. These photocatalysts are useful for the removal of toxic and non-biodegradable organic pollutants in water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of Bi1-xEuxOX (X = F and Br; x = 0, 0.01, 0.03 and 0.05) phosphors were synthesized at relatively low temperature and short duration (500 degrees C, 1 h). Rietveld refinement results verified that all the compounds were crystallized in the tetragonal structure with space group P4/nmm (no. 129). Photoluminescence spectra exhibit characteristic luminescence D-5(0) -> F-7(J) (J = 0-4) intra-4f shell Eu3+ ion transitions. The magnetic dipole (D-5(0) -> F-7(1)) transition dominates the emission of BiOF:Eu3+, while the electric dipole (D-5(0) -> F-7(2)) peak was stronger in BiOBr:Eu3+ phosphors. The evaluated CIE color coordinates for Bi0.95Eu0.05OBr (0.632, 0.358) are close to the commercial Y2O3:Eu3+ (0.645, 0.347) and Y2O2S:Eu3+ (0.647, 0.343) red phosphors. Intensity parameters (Omega(2), Omega(4)) and various radiative properties such as transition rates (A), branching ratios (beta), stimulated emission cross-section (sigma(e)), gain bandwidth (sigma(e) x Delta lambda(eff)) and optical gain (sigma(e) x tau) were calculated using the Judd-Ofelt theory. It was observed that BiOBr:Eu3+ phosphors have a long lifetime (tau) and better optical gain (sigma(e) x tau) as compared to reported Eu3+ doped materials. Furthermore, these compounds exhibit excellent photocatalytic activity for the degradation of rhodamine B dye under visible light irradiation. The determined radiative properties and photocatalytic results revealed that BiOBr:Eu3+ phosphors have potential applications in energy and environmental remedies, such as to develop red phosphors for white light-emitting diodes, red lasers and to remove toxic organic industrial effluents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eu3+-activated BaMoO4 phosphors were synthesized by the nitrate citrate gel combustion method. The Rietveld refinement analysis confirmed that all the compounds were crystallized in the scheelite-type tetragonal structure with I4(1)/a (No. 88) space group. Photoluminescence (PL) spectra of BaMoO4 phosphor reveals broad emission peaks at 465 and 605 nm, whereas the Eu3+-activated BaMoO4 phosphors show intense 615 nm (D-5(0) -> F-7(2)) emission peak. Judd-Ofelt theory was applied to evaluate the intensity parameters (Omega(2), Omega(4)) of Eu3+-activated BaMoO4 phosphors. The transition probabilities (A(T)), radiative lifetime (tau(rad)), branching ratio (beta), stimulated emission cross-section (sigma(e)), gain bandwidth (sigma(e) x Delta lambda(eff)) and optical gain (sigma(e) x tau(rad)) were investigated by using the intensity parameters. CIE color coordinates confirmed that the BaMoO4 and Eu3+-activated BaMoO4 phosphors exhibit white and red luminescence, respectively. The obtained results revealed that the present phosphors can be a potential candidate for red lasers and white LEDs applications. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

White-light emitting Dy3+ doped layered BiOCl phosphors were synthesized by the solid state route and their structure was confirmed by the Rietveld refinement method. On substitution of Dy3+ ion to Bi3+-site in BiOCl, the photoluminescence spectra exhibit blue (F-4(9/2) -> H-6(15/2)), yellow (F-4(9/2) -> H-6(13/2)) and red (F-4(9/2) -> H-6(11/2)) emissions which function together to generate white light. It was found that the emission intensity increases up to 9 mol% of Dy3+ and then quenched due to dipole-dipole interaction. Judd-Ofelt theory and radiative properties suggest that the present phosphors have a long lifetime, high quantum efficiency, excellent color purity and better stimulated emission cross-section compared to reported Dy3+ doped compounds. The obtained color chromaticity results are close to the National Television System Committee standard and clearly establish the bright prospects of these phosphors in white luminescence. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

White-light emitting Dy3+ doped layered BiOCl phosphors were synthesized by the solid state route and their structure was confirmed by the Rietveld refinement method. On substitution of Dy3+ ion to Bi3+-site in BiOCl, the photoluminescence spectra exhibit blue (F-4(9/2) -> H-6(15/2)), yellow (F-4(9/2) -> H-6(13/2)) and red (F-4(9/2) -> H-6(11/2)) emissions which function together to generate white light. It was found that the emission intensity increases up to 9 mol% of Dy3+ and then quenched due to dipole-dipole interaction. Judd-Ofelt theory and radiative properties suggest that the present phosphors have a long lifetime, high quantum efficiency, excellent color purity and better stimulated emission cross-section compared to reported Dy3+ doped compounds. The obtained color chromaticity results are close to the National Television System Committee standard and clearly establish the bright prospects of these phosphors in white luminescence. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

设计了组成为0.70TeO2-(0.20-x)ZnO-xGeO2—0.05La2O3-0.025K2O-0.025Na2O-0.01Yb2O3(摩尔分数x=0,0.05,0.10,0.15和0.20)的碲酸盐激光玻璃,测试了热学性质、吸收光谱、荧光光谱和荧光寿命。计算了Yb^3+离子的吸收截面、受激发射截面、荧光有效线宽等参数。结果表明,组成为0.70TeO2-0.20GeO2-0.05La2O3-0.025K2O-0.025Na2O的玻璃具有优于著名的碲锌钠(TZN)玻璃的热稳定性,高的受激发射截面(1