997 resultados para stem density


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Atlantic Rain Forest, an important biodiversity hot spot, has faced severe habitat loss since the last century which has resulted in a highly fragmented landscape with a large number of small forest patches (<100 ha). For conservation planning it is essential to understand how current and future forest regeneration depends on ecological processes, fragment size and the connection to the regional seed pool. We have investigated the following questions by applying the forest growth simulation model FORMIND to the situation of the Atlantic Forest in the state of Sao Paulo, SE Brazil: (1) which set of parameters describing the local regeneration and level of density regulation can reproduce the biomass distribution and stem density of an old growth forest in a reserve? (2) Which additional processes apart from those describing the dynamics of an old growth forest, drive forest succession of small isolated fragments? (3) Which role does external seed input play during succession? Therefore, more than 300 tree species have been classified into nine plant functional types (PFTs), which are characterized by maximum potential height and shade tolerance. We differentiate between two seed dispersal modes: (i) local dispersal, i.e. all seedlings originated from fertile trees within the simulated area and (ii) external seed rain. Local seed dispersal has been parameterized following the pattern oriented approach, using biomass estimates of old growth forest. We have found that moderate density regulation is essential to achieve coexistence for a broad range of regeneration parameters. Considering the expected uncertainty and variability in the regeneration processes it is important that the forest dynamics are robust to variations in the regeneration parameters. Furthermore, edge effects such as increased mortality at the border and external seed rain have been necessary to reproduce the patterns for small isolated fragments. Overall, simulated biomass is much lower in the fragments compared to the continuous forest, whereas shade tolerant species are affected most strongly by fragmentation. Our simulations can supplement empirical studies by extrapolating local knowledge on edge effects of fragments to larger temporal and spatial scales. In particular our results show the importance of external seed rain and therefore highlight the importance of structural connectivity between regenerating fragments and mature forest stands. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Small mammals can impede tree regeneration by injuring seedlings and saplings in several ways. One fatal way is by severing their stems, but apparently this type of predation is not well-studied in tropical rain forest. Here, we report on the incidence of 'stem-cutting' to new, wild seedlings of two locally dominant, canopy tree species monitored in 40 paired forest understorey and gap-habitat areas in Korup, Cameroon following a 2007 masting event. In gap areas, which are required for the upward growth and sapling recruitment of both species, 137 seedlings of the long-lived, light-demanding, fast-growing large tropical tree (Microberlinia bisulcata) were highly susceptible to stem-cutting (83% of deaths) - it killed 39% of all seedlings over a c. 2-y period. In stark contrast, seedlings of the more shade-tolerant, slower-growing tree species (Tetraberlinia bifoliolata) were hardly attacked (4.3%). In the understorey, however, stem-cutting was virtually absent. Across the gap areas, the incidence of stem-cutting of M. bisulcata seedlings showed significant spatial variation that could not be explained significantly by either canopy openness or Janzen-Connell type effects (proximity and basal area of conspecific adult trees). To examine physical and chemical traits that might explain the species difference to being cut, bark and wood tissues were collected from a separate sample of seedlings in gaps (i.e. not monitored for stem-cutting). These analyses suggested that, compared with T. bifoliolata, the lower stem density, higher Mg and K and fatty acid concentrations in bark, and fewer phenolic and terpene compounds in M. bisulcata seedlings made them more palatable and attractive to small-mammal predators, likely rodents. We conclude that selective stem-cutting is a potent countervailing force to the current local canopy dominance of the grove-forming M. bisulcata by limiting the recruitment and abundance of its saplings. Given the ubiquity of gaps and ground-dwelling rodents in pantropical forests, it would be surprising if this form of lethal browsing was restricted to Korup.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A 67-year-old plantation of Flindersia brayleyana F. Muell. in the wet tropics of north-cast Queensland had developed with minimal management. Before thinning, the stand had a canopy stem density of 770 stems ha(-1) of which 564 were F brayleyana, a stand basal area of 78 m(2) ha(-1), a mean stem diameter at breast height (dbh) of 36 cm, and a mean dbh increment of 5.2 mm year(-1) over the life of the plantation and 0.5 mm year I at the time of thinning. Sixty-three percent of the trees had crown ratios (crown diameter determined from foliage projected area: dbh) of less than 12. Thinning treatments removed 57% of the canopy stems and 45% of the stand basal area. Mean dbh increment over 2.5 years after thinning on basaltic soil was 5.8 +/- 0.3 mm year(-1), but for trees with crown ratio

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Accurate habitat mapping is critical to landscape ecological studies such as required for developing and testing Montreal Process indicator 1.1e, fragmentation of forest types. This task poses a major challenge to remote sensing, especially in mixedspecies, variable-age forests such as dry eucalypt forests of subtropical eastern Australia. In this paper, we apply an innovative approach that uses a small section of one-metre resolution airborne data to calibrate a moderate spatial resolution model (30 m resolution; scale 1:50 000) based on Landsat Thematic Mapper data to estimate canopy structural properties in St Marys State Forest, near Maryborough, south-eastern Queensland. The approach applies an image-processing model that assumes each image pixel is significantly larger than individual tree crowns and gaps to estimate crown-cover percentage, stem density and mean crown diameter. These parameters were classified into three discrete habitat classes to match the ecology of four exudivorous arboreal species (yellowbellied glider Petaurus australis, sugar glider P. breviceps, squirrel glider P. norfolcensis , and feathertail glider Acrobates pygmaeus), and one folivorous arboreal marsupial, the greater glider Petauroides volans. These species were targeted due to the known ecological preference for old trees with hollows, and differences in their home range requirements. The overall mapping accuracy, visually assessed against transects (n = 93) interpreted from a digital orthophoto and validated in the field, was 79% (KHAT statistic = 0.72). The KHAT statistic serves as an indicator of the extent that the percentage correct values of the error matrix are due to ‘true’ agreement verses ‘chance’ agreement. This means that we are able to reliably report on the effect of habitat loss on target species, especially those with a large home range size (e.g. yellow-bellied glider). However, the classified habitat map failed to accurately capture the spatial patterning (e.g. patch size and shape) of stands with a trace or sub-dominance of senescent trees. This outcome makes the reporting of the effects of habitat fragmentation more problematic, especially for species with a small home range size (e.g. feathertail glider). With further model refinement and validation, however, this moderateresolution approach offers an important, cost eff e c t i v e advancement in mapping the age of dry eucalypt forests in the region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Forest structure determines light availability for understorey plants. The structure of lowland Amazonian forests is known to vary over long edaphic gradients, but whether more subtle edaphic variation also affects forest structure has not beenresolved. In western Amazonia, the majority of non-flooded forests grow on soils derived either from relatively fertile sediments of the Pebas Formation or from poorer sediments of the Nauta Formation. The objective of this study was to compare structure and light availability in the understorey of forests growing on these two geological formations. We measured canopy openness and tree stem densities in three size classes in northeastern Peru in a total of 275 study points in old-growth terra firme forests representing the two geological formations. We also documented variation in floristic composition (ferns, lycophytes and the palm Iriartea deltoidea) and used Landsat TM satellite image information to model the forest structural and floristic features over a larger area. The floristic compositions of forests on the two formations were clearly different, and this could also be modelled with the satellite imagery. In contrast, the field observations of forest structure gave only a weak indication that forests on the Nauta Formation might be denser than those on the Pebas Formation. The modelling of forest structural features with satellite imagery did not support this result. Our results indicate that the structure of forest understorey varies much less than floristic composition does over the studied edaphic difference.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we present and apply a new three-dimensional model for the prediction of canopy-flow and turbulence dynamics in open-channel flow. The approach uses a dynamic immersed boundary technique that is coupled in a sequentially staggered manner to a large eddy simulation. Two different biomechanical models are developed depending on whether the vegetation is dominated by bending or tensile forces. For bending plants, a model structured on the Euler-Bernoulli beam equation has been developed, whilst for tensile plants, an N-pendula model has been developed. Validation against flume data shows good agreement and demonstrates that for a given stem density, the models are able to simulate the extraction of energy from the mean flow at the stem-scale which leads to the drag discontinuity and associated mixing layer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT Inventory and prediction of cork harvest over time and space is important to forest managers who must plan and organize harvest logistics (transport, storage, etc.). Common field inventory methods including the stem density, diameter and height structure are costly and generally point (plot) based. Furthermore, the irregular horizontal structure of cork oak stands makes it difficult, if not impossible, to interpolate between points. We propose a new method to estimate cork production using digital multispectral aerial imagery. We study the spectral response of individual trees in visible and near infrared spectra and then correlate that response with cork production prior to harvest. We use ground measurements of individual trees production to evaluate the model’s predictive capacity. We propose 14 candidate variables to predict cork production based on crown size in combination with different NDVI index derivates. We use Akaike Information Criteria to choose the best among them. The best model is composed of combinations of different NDVI derivates that include red, green, and blue channels. The proposed model is 15% more accurate than a model that includes only a crown projection without any spectral information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT Monitoring analyses aim to understand the processes that drive changes in forest structure and, along with prediction studies, may assist in the management planning and conservation of forest remnants. The objective of this study was to analyze the forest dynamics in two Atlantic rainforest fragments in Pernambuco, Brazil, and to predict their future forest diameter structure using the Markov chain model. We used continuous forest inventory data from three surveys in two forest fragments of 87 ha (F1) and 388 ha (F2). We calculated the annual rates of mortality and recruitment, the mean annual increment, and the basal area for each of the 3-year periods. Data from the first and second surveys were used to project the third inventory measurements, which were compared to the observed values in the permanent plots using chi-squared tests (a = 0.05). In F1, a decrease in the number of individuals was observed due to mortality rates being higher than recruitment rates; however, there was an increase in the basal area. In this fragment, the fit to the Markov model was adequate. In F2, there was an increase in both the basal area and the number of individuals during the 6-year period due to the recruitment rate exceeding the mortality rate. For this fragment, the fit of the model was unacceptable. Hence, for the studied fragments, the demographic rates influenced the stem density more than the floristic composition. Yet, even with these intense dynamics, both fragments showed active growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En 2011, cinq (5) cultivars de saules ont été sélectionnés pour leur rendement en biomasse. Ils ont été plantés sur quatre sites de la province du Québec et ont été maintenus selon le protocole de la culture intensive sur courtes rotations (CICR) afin de déterminer leur potentiel pour la bioénergie dans des environnements contrastés. La composition et l’anatomie du bois de ces cultivars ont été caractérisées et comparés en fonction des conditions environnementales caractéristiques de chaque site. La hauteur et le diamètre à la base des plantes diffèrent selon les sites. Ainsi, les cultivars répondent de façon spécifique aux conditions pédoclimatiques dans lesquelles ils sont cultivés. L’effet de l’environnement n’a pas été mis en évidence sur la teneur en lignine des cultivars. Cependant, un effet génotypique a pu être constaté soulignant l’importance de la sélectivité des cultivars. La densité du bois a étonnamment conservé la même hiérarchie génotypique entre les sites. À l’opposé, l’anatomie du bois présente des différences notamment au niveau des caractéristiques des fibres et des vaisseaux. Une forte teneur en polyphénols ainsi que des fibres moins larges et des vaisseaux plus nombreux ont été observés sur le site dont le bois est le plus dense supposant l’effet probable d’un stress abiotique. De plus, deux fois plus de fibres gélatineuses, fibres riches en cellulose, ont été identifiées sur ce site montrant un intérêt pour la production de bioéthanol.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes a new bio-indicator method for assessing wetland ecosystem health: as such, the study is particularly relevant to current legislation such as the EU Water Framework Directive, which provides a baseline of the current status Of Surface waters. Seven wetland sites were monitored across northern Britain, with model construction data for predicting, eco-hydroloplical relationships collected from five sites during 1999, Two new sites and one repeat site were monitored during 2000 to provide model test data. The main growing season for the vegetation, and hence the sampling period, was May-August during both years. Seasonal mean concentrations of nitrate (NO3-) in surface and soil water samples during 1999 ranged from 0.01 to 14.07 mg N 1(-1), with a mean value of 1.01 mg N 1(-1). During 2000, concentrations ranged from trace level (<0.01 m- N 1(-1)) to 9.43 mg N 1(-1), with a mean of 2.73 mg N 1(.)(-1) Surface and soil-water nitrate concentrations did not influence plant species composition significantly across representative tall herb fen and mire communities. Predictive relationships were found between nitrate concentrations and structural characteristics of the wetland vegetation, and a model was developed which predicted nitrate concentrations from measures of plant diversity, canopy structure and density of reproductive structures. Two further models, which predicted stem density and density of reproductive structures respectively, utilised nitrate concentration as one of the independent predictor variables. Where appropriate, the models were tested using data collected during 2000. This approach is complementary to species-based monitoring, representing a useful and simple too] to assess ecological status in target wetland systems and has potential for bio-indication purposes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mangrove structure and distribution is conditioned by geomorphic processes. This paper describes the response of mangroves to sedimentary processes at the Cananeia-Iguape Coastal System on the south coast of Sao Paulo State (Brazil), between latitudes 24 degrees 40`S and 25 degrees 20`S. Within six study areas 41 plots were established along 14 transects. Plot size varied according to stem density from 2mx2m to 20mx20m. Here mangroves are strongly coupled to sedimentary processes, forming discrete architectural elements within particular depositional environments or topographic settings. These sedimentary structures and progradation environments are colonized by Laguncularia racemosa, associated with the smooth cordgrass Spartina alterniflora. Rhizophora mangle occurs typically near creeklets where tidal flooding is more frequent. Where tidal influence is restricted Avicennia schaueriana becomes dominant. Erosive margins are dominated by A. schaueriana or R. mangle. Single linkage cluster analysis yields three groups (A, B and C), with high levels of similarity, providing support to the classification of the data into two broad landform categories: depositional and erosive. Group A includes plots with the least structural development (nominal stem diameter d(n) between 1.05 and 4.61cm). Group B is composed of stems of intermediate diameter (4.99 cm <= d(n) <= 5.63cm). Group C plots have the largest structural development (5.50 cm <= d(n) <= 11.10cm). The structure of mangroves (dominance and structural development) reflects responses to geomorphology and habitat change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The expansion of soybean cultivation into the Amazon in Brazil has potential hydrological effects at local to regional scales. To determine the impacts of soybean agriculture on hydrology, a comparison of net precipitation (throughfall, stemflow) in undisturbed tropical forest and soybean fields on the southern edge of the Amazon Basin in the state of Mato Grosso is needed. This study measured throughfall with troughs and stemflow with collar collectors during two rainy seasons. The results showed that in forest 91.6% of rainfall was collected as throughfall and 0.3% as stemflow, while in soybean fields with two-month old plants, 46.2% of rainfall was collected as throughfall and 9.0% as stemflow. Hence, interception of precipitation in soybean fields was far greater than in intact forests. Differences in throughfall, stemflow and net precipitation were found to be mainly associated with differences in plant structure and stem density in transitional forest and soybean cropland. Because rainfall interception in soybean fields is higher than previously believed and because both the area of cropland and the frequency of crop cycles (double cropping) are increasing rapidly, interception needs to be reconsidered in regional water balance models when consequences of land cover changes are analyzed in the Amazon soybean frontier region. Based on the continued expansion of soybean fields across the landscape and the finding that net precipitation is lower in soy agriculture, a reduction in water availability in the long term can be assumed. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Salt marshes are coastal ecosystem in the upper intertidal zone between internal water and sea and are widely spread throughout Italy, from Friuli Venezia Giulia, in the North, to Sicily, in the South. These delicate environments are threatened by eutrophication, habitat conversion (for land reclaiming or agriculture) and climate change impacts such as sea level rise. The objectives of my thesis were to: 1) analyse the distribution and biomass of the perennial native cordgrass Spartina maritima (one of the most relevant foundation species in the low intertidal saltmarsh vegetation in the study region) at 7 sites along the Northern Adriatic coast and relate it to critical environmental parameters and 2) to carry out a nutrient manipulation experiment to detect nutrient enrichment effects on S. maritima biomass and vegetation characteristics. The survey showed significant differences among sites in biological response variables - i.e., live belowground, live aboveground biomass, above:belowground (R:S) biomass ratio, % cover, average height and stem density – which were mainly related to differences in nitrate, nitrite and phosphate contents in surface water. Preliminary results from the experiment (which is still ongoing) showed so far no significant effects of nutrient enrichment on live aboveground and belowground biomass, R:S ratio, leaf %Carbon, average height, stem density and random shoot height; however, a significantly higher (P=0.018) increase in leaf %Nitrogen content in treated plots indicated that nutrient uptake had occurred.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The montane forests of Mount Kilimanjaro in Tanzania have been subjected to a long history of selective logging. However, since 1984 logging of indigenous trees is prohibited. Today, these forests allow us to evaluate the long-term effects of selective logging. We mapped the height and diameter at breast height (DBH) of all trees >10 cm DBH on 10 sites of 0.25 ha. Five sites represent non-logged forests, another five selectively logged forests. We tested whether forests were still visibly affected 30–40 years after selective logging in terms of their forest structure and tree diversity. Additionally we compared tree densities of different species guilds, including disturbance-indicator species, late-successional species and main timber species. Furthermore, we specifically compared the community size distributions of selectively logged and non-logged forests, first across all species and then for the most important timber species, Ocotea usambarensis, alone. 30–40 years after selective logging forests still showed a higher overall stem density, mainly due to higher relative abundances of small trees (<50 cm DBH) in general, and higher densities of small size class stems of late-successional species specifically. For O. usambarensis, the selectively logged sites harboured higher relative abundances of small trees and lower relative abundances of harvestable trees. The higher relative abundance of small O. usambarensis-stems in selectively logged forests appears promising for future forest recovery. Thus, outside protected areas, selective logging may be a sustainable management option if logging cycles are considerably longer than 40 years, enough large source trees remain, and the recruiting O. usambarensis individuals find open space for their establishment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La pataca (Helianthus tuberosus L.) es una especie de cultivo con un alto potencial en la producción de hidratos de carbono de reserva en forma de polifructanos, especialmente inulina, que se acumulan temporalmente en los tallos en forma de polisacáridos para translocarse posteriormente a los tubérculos, donde son almacenados. Aunque tradicionalmente el producto de interés del cultivo son los tubérculos, que acumulan gran cantidad de hidratos de carbono fermentables (HCF) cuando se recogen al final del ciclo de desarrollo, en este trabajo se pretende evaluar el potencial de la pataca como productor de HCF a partir de los tallos cosechados en el momento de máximo contenido en HCF, mediante un sistema de cultivo plurianual. Se han realizado los siguientes estudios: i) Determinación del momento óptimo de cosecha en ensayos con 12 clones ii) Potencial del cultivo plurianual de la pataca en términos de producción anual de biomasa aérea y de HCF en cosechas sucesivas, iii) Ensayos de conservación de la biomasa aérea, iv) Estimación de los costes de las dos modalidades de cultivo de pataca para producción de HCF y v) Estimación de la sostenibilidad energética de la producción de bioetanol mediante la utilización de los subproductos. Para la determinación del momento óptimo de la cosecha de la biomasa aérea se ensayaron 12 clones de diferente precocidad en Madrid; 4 tempranos (Huertos de Moya, C-17, Columbia y D-19) y 8 tardíos (Boniches, China, K-8, Salmantina, Nahodka, C-13, INIA y Violeta de Rennes). El máximo contenido en HCF tuvo lugar en el estado fenológico de botón floral-flor que además coincidió con la máxima producción de biomasa aérea. De acuerdo con los resultados obtenidos, la cosecha de los clones tempranos se debería realizar en el mes de julio y en los clones tardíos en septiembre, siendo éstos últimos más productivos. La producción media más representativa entre los 12 clones, obtenida en el estado fenológico de botón floral fue de 23,40 t ms/ha (clon INIA), con un contenido medio en HCF de 30,30 % lo que supondría una producción potencial media de 7,06 t HCF/ha. La producción máxima en HCF se obtuvo en el clon Boniches con 7,61 t/ha y 22,81 t ms/ha de biomasa aérea. En el sistema de cultivo plurianual la cantidad de tallos por unidad de superficie aumenta cada año debido a la cantidad de tubérculos que van quedando en el terreno, sobre todo a partir del 3er año, lo que produce la disminución del peso unitario de los tallos, con el consiguiente riesgo de encamado. El aclareo de los tallos nacidos a principios de primavera mediante herbicidas tipo Glifosato o mediante una labor de rotocultor rebaja la densidad final de tallos y mejora los rendimientos del cultivo. En las experiencias de conservación de la biomasa aérea se obtuvo una buena conservación por un período de 6 meses de los HCF contenidos en los tallos secos empacados y almacenados bajo cubierta. Considerando que el rendimiento práctico de la fermentación alcohólica es de 0,5 l de etanol por cada kg de azúcar, la producción potencial de etanol para una cosecha de tallos de 7,06 t de HCF/ha sería de 3.530 l/ha. El bagazo producido en la extracción de los HCF de la biomasa aérea supondría 11,91 t/ha lo que utilizado para fines térmicos supone más de 3 veces la energía primaria requerida en el proceso de producción de etanol, considerando un poder calorífico inferior de 3.832,6 kcal/kg. Para una producción de HCF a partir de la biomasa aérea de 7,06 t/ha y en tubérculos al final del ciclo de 12,11 t/ha, los costes de producción estimados para cada uno de ellos fueron de 184,69 €/t para los HCF procedentes de la biomasa aérea y 311,30 €/t para los de tubérculos. Como resultado de este trabajo se puede concluir que la producción de HCF a partir de la biomasa aérea de pataca en cultivo plurianual, es viable desde un punto de vista técnico, con reducción de los costes de producción respecto al sistema tradicional de cosecha de tubérculos. Entre las ventajas técnicas de esta modalidad de cultivo, cabe destacar: la reducción de operaciones de cultivo, la facilidad y menor coste de la cosecha, y la posibilidad de conservación de los HCF en la biomasa cosechada sin mermas durante varios meses. Estas ventajas, compensan con creces el menor rendimiento por unidad de superficie que se obtiene con este sistema de cultivo frente al de cosecha de los tubérculos. Jerusalem artichoke (Helianthus tuberosus L.) (JA) is a crop with a high potential for the production of carbohydrates in the form of polyfructans, especially inulin, which are temporarily accumulated in the stems in the form of polysaccharides. Subsequently they are translocated to the tubers, where they are finally accumulated. In this work the potential of Jerusalem artichoke for fermentable carbohydrates from stems that are harvested at their peak of carbohydrates accumulation is assessed as compared to the traditional cultivation system that aims at the production of tubers harvested at the end of the growth cycle. Tubers are storage organs of polyfructans, namely fermentable carbohydrates. Studies addressed in this work were: i) Determination of the optimum period of time for stem harvesting as a function of clone precocity in a 12-clone field experiment; ii) Study of the potential of JA poly-annual crop regarding the annual yield of aerial biomass and fermentable carbohydrates (HCF) over the years; iii) Tests of storage of the aerial biomass, iv) Comparative analysis of the two JA cultivation systems for HCF production: the poly-annual system for aerial biomass harvesting versus the annual cultivation system for tubers and v) Estimation of the energy sustainability of the bioethanol production by using by-products of the production chain. In order to determine the best period of time for aerial biomass harvesting twelve JA clones of different precocity were tested in Madrid: four early clones (Huertos de Moya, C-17, Columbia and D-19) and eight late clones (Boniches, China, K-8 , Salmantina, Nahodka, C-13, INIA and Violeta de Rennes). Best time was between the phenological stages of floral buds (closed capitula) and blossom (opened capitula), period in which the peak of biomass production coincides with the peak of HCF accumulation in the stems. According to the results, the early clones should be harvested in July and the late ones in September, being the late clones more productive. The clone named INIA was the one that exhibited more steady yields in biomass over the 12 clones experimented. The average potential biomass production of this clone was 23.40 t dm/ha when harvested at the floral buds phenological stage; mean HCF content is 30.30%, representing 7.06 t HCF/ha yield. However, the highest HCF production was obtained for the clone Boniches, 7.61 t HCF/ha from a production of 22.81 t aerial biomass/ha. In the poly-annual cultivation system the number of stems per unit area increases over the years due to the increase in the number of tubers that are left under ground; this effect is particularly important after the 3rd year of the poly-annual crop and results in a decrease of the stems unit weight and a risk of lodging. Thinning of JA shoots in early spring, by means of an herbicide treatment based on glyphosate or by means of one pass with a rotary tiller, results in a decrease of the crop stem density and in higher crop yields. Tests of biomass storing showed that the method of keeping dried stems packed and stored under cover results in a good preservation of HCF for a period of six months at least. Assuming that the fermentation yield is 0.5 L ethanol per kg sugars and a HCF stem production of 7.06 t HCF/ha, the potential for bioethanol is estimated at 3530 L/ha. The use of bagasse -by-product of the process of HCF extraction from the JA stems- for thermal purposes would represent over 3 times the primary energy required for the industrial ethanol production process, assuming 11.91 t/ha bagasse and 3832.6 kcal/kg heating value. HCF production costs of 7.06 t HCF/ha yield from aerial biomass and HCF production costs of 12.11 t HCF/ha from tubers were estimated at 184.69 €/t HCF and 311.30 €/t HCF, respectively. It can be concluded that the production of HCF from JA stems, following a poly-annual cultivation system, can be feasible from a technical standpoint and lead to lower production costs as compared to the traditional annual cultivation system for the production of HCF from tubers. Among the technical advantages of the poly-annual cultivation system it is worth mentioning the reduction in crop operations, the ease and efficiency of harvesting operations and the possibility of HCF preservation without incurring in HCF losses during the storage period, which can last several months. These advantages might compensate the lower yield of HCF per unit area that is obtained in the poly-annual crop system, which aims at stems harvesting, versus the annual one, which involves tubers harvesting.