281 resultados para steglich esterification
Resumo:
Poly(ethylene oxide) has been coupled to poly(3-hexylthiophene) using esterification to produce pure diblock copolymers, highly relevant for use in organic electronic devices. The new synthetic route described herein uses a metal-free coupling step, for the first time, to afford well-defined polymers in high yields following facile purification.
Resumo:
Ziel dieser Arbeit war die Totalsynthese von Monilicin. Seine Chlor- und Brom-Derivate wurden aus Monilinia fructicola isoliert und zeigten fungizide Wirkung. Die Schlüsselschritte der Synthese sind der Aufbau des ε-Lakton, die Einführung der exozyklischen Carboxymethyl-Gruppe und der Einbau der Doppelbindung in das Lakton. Es wurden drei Synthesestrategien verfolgt, wobei die Bildung des Laktons über eine Veresterung erfolgen sollte.rnÜber enantioselektive Syntheseschritte sollten die reinen Enantiomere erhalten werden. Ausgehend vom Orcinol erfolgte auf allen Syntheserouten zuerst der Aufbau des 5-Hydroxy-7-methylchromon-Grundgerüstes, und anschließend dessen Funktionalisierung in den Positionen 2 und 3. Der Ringschluss zum ε-Lakton gelang über eine Steglich-Veresterung. Syntheseweg A lieferte nach der Oxidation der primären exozyklischen Alkoholgruppe und anschließender Methylierung das Dihydromonilicin. Auf dem Syntheseweg B gelang die Einführung der späteren exozyklischen Carboxymethyl-Gruppe vor der Laktonisierung. Aus der Dicarbonsäure konnte zum ersten Mal auch der Naturstoff Oxalicumon C totalsynthetisch dargestellt und seine absolute Konfiguration aufgeklärt werden. Nach selektiver Hydrolyse konnte aus Oxalicumon C ebenfalls das Dihydromonilicin synthetisiert werden. Die Darstellung von Monilicin durch Einführung der Doppelbindung in das Dihydromonilicin oder bereits vor der Laktonisierung (Syntheseweg C) konnte nicht erreicht werden. Einige der Chromon-Derivate zeigten fungizide und zytotoxische Aktivitäten. rn
Resumo:
The purpose of this thesis was to synthesize biodegradable polyesters from a wide array of functionalized ¿-hydroxy acids. The initial strategy was to use amido-functionalized ¿-hydroxy acids and 2-bromopropanoyl bromide to form amido-functionalized cyclic diesters. Then, the resulting cyclic diesters would be used in ring opening polymerization to create biodegradable polyesters. However, the spontaneous rapid degradation of the secondary amido-functionalized cyclic diester structure, as seen with 2-benzamido-hydroxyacetic acid, limited ring formation to tertiary amido-functionalized ¿-hydroxy acids. Also, the hydrophilic nature of most ¿-hydroxy acids allowed water into the crystal structure of the ¿-hydroxy acid. Then, when the ¿-hydroxy acid was used in ring forming reactions, the associated water deactivated reactive reagents and limited cyclic diester synthesis. These issues led to the synthesis of hydrophobic and tertiary amido- and imido-functionalized ¿-hydroxy acids, 2-phthalimido-2-hydroxyacetic acid and 2-(1-oxoisoindolin-2-yl) hydroxyacetic acid. The new ¿-hydroxy acids were used in two new polymerization techniques, melt polycondensation and solution polymerization, instead of ring open polymerization. Melt polycondensation and solution polymerization had shown previous success in forming oligomers of amido-functionalized ¿-hydroxy acids. Melt polycondensation was conducted by heating the monomer past its melting temperature under reduced pressure. The uncatalyzed melt polycondensation of 2-(1-oxoisoindolin-2-yl) hydroxyacetic acid created polyesters (¿ 960 g/mol). The scandium(III) trifluoromethanesulfonate enhanced melt polycondensation polymerization created slightly larger oligomers (¿ 1340 g/mol). However, 2-phthalimido-2-hydroxyacetic acid was not compatible with melt polycondensation because thermal degradation occurred. Thus, solution polymerization was conducted via Steglich esterification. Only oligomeric functionalized polyesters were formed (¿ 1060 g/mol). Future work should focus on optimization of the catalyst and the reaction conditions to obtain higher molecular weight polyesters. Also, 2-(1-oxoisoindolin-2-yl) hydroxyacetic acid should be utilized in the cyclic diester synthesis technique.
Resumo:
BACKGROUND Niemann-Pick type C (NP-C) is a rare progressive neurodegenerative lipid storage disorder with heterogeneous clinical presentation and challenging diagnostic procedures. Recently oxysterols have been reported to be specific biomarkers for NP-C but knowledge on the intra-individual variation and on reference intervals in children and adolescents are lacking. METHODS We established a LC-MS/MS assay to measure Cholestane-3β, 5α, 6β-triol (C-triol) and 7-Ketocholesterol (7-KC) following Steglich esterification. To assess reference intervals and intra-individual variation we determined oxysterols in 148 children and adolescents from 0 to 18 years and repeat measurements in 19 of them. RESULTS The reported method is linear (r>0.99), sensitive (detection limit of 0.03 ng/mL [0.07 nM] for C-triol, and 0.54 ng/mL [1.35 nM] for 7-KC) and precise, with an intra-day imprecision of 4.8% and 4.1%, and an inter-day imprecision of 7.0% and 11.0% for C-triol (28 ng/ml, 67 nM) and 7-KC (32 ng/ml, 80 nM), respectively. Recoveries for 7-KC and C-triol range between 93% and 107%. The upper reference limit obtained for C-triol is 40.4 ng/mL (95% CI: 26.4-61.7 ng/mL, 96.0 nM, 95% CI: 62.8-146.7 nM) and 75.0 ng/mL for 7-KC (95% CI: 55.5-102.5 ng/mL, 187.2 nM, 95% CI: 138.53-255.8 nM), with no age or gender dependency. Both oxysterols have a broad intra-individual variation of 46%±23% for C-triol and 52%±29% for 7-KC. Nevertheless, all Niemann-Pick patients showed increased C-triol levels including Niemann-Pick type A and B patients. CONCLUSIONS The LC-MS/MS assay is a robust assay to quantify C-triol and 7-KC in plasma with well documented reference intervals in children and adolescents to screen for NP-C in the pediatric population. In addition our results suggest that especially the C-triol is a biomarker for all three Niemann-Pick diseases.
Resumo:
The effect of modification of carboxyl groups of Ribonuclease-Aa on the enzymatic activity and the antigenic structure of the protein has been studied. Modification of four of the eleven free carboxyl groups of the protein by esterification in anhydrous methanol/0.1 M hydrochloric acid resulted in nearly 80% loss in enzymatic activity but had very little influence on the antigenic structure of the protein. Further increases in the modification of the carboxyl groups caused a progressive loss in immunological activity, and the fully methylated RNase-A exhibited nearly 30% immunological activity. Concomitant with this change in the antigenic structure of the protein, the ability of the molecule to complement with RNase-S-protein increased, clearly indicating the unfolding of the peptide "tail" from the remainder of the molecule. The susceptibility to proteolysis, accessibility of methionine residues for orthobenzoquinone reaction and the loss in immunological activity of the more extensively esterified derivatives of RNase-A are suggestive of the more flexible conformation of these derivatives as compared with the compact native conformation. The fact that even the fully methylated RNase-A retains nearly 30% of its immunological activity suggested that the modified protein contained antibody recognizable residual native structure, which presumably accommodates some antigenic determinants.
Resumo:
The esterification of propionic acid was investigated using three different alcohols, namely, isopropyl alcohol, isobutyl alcohol, and isoamyl alcohol. The variation of conversion with time for the synthesis of isoamyl propionate was investigated in the presence of five enzymes. Novozym 435 showed the highest activity, and this was used as the enzyme for investigating the various parameters that influence the esterification reaction. The Ping-Pong Bi-Bi model with inhibition by both acid and alcohol was used to model the experimental data and determine the kinetics of the esterification reaction.
Resumo:
VITAMIN A and cholesterol esters have been shown to undergo extensive hydrolysis in the lumen of the small intestine during the process of absorption; they are re-esterified to appear in the lymph mostly as esters1,2. However, the vitamin A esters of the lymph, blood and liver of the rat are formed by long-chain fatty acids3 and in the normal rat liver, probably as palmitates4. On the other hand, cholesterol esters are usually made up of poly-unsaturated fatty acids in the lymph and blood of rats5. For the absorption of the two lipid materials, the enzymes of the pancreas have been largely implicated, while not much attention has been paid to the possible role of the mucosal enzymes. From the behaviour of the mucosal enzymes, as presented here, it appears that probably these enzymes play a more important part in the re-esterification of the two lipid materials during their absorption.
Resumo:
Young male rats maintained on a diet containing 1% cholesterol were sacrificed at the end of 1st, 2nd, 3rd, 5th, and 7th week. Acetone powders prepared from their intestinal mucosa and pancreas were tested for the synthetic and hydrolytic activities for Vitamin A and cholesterol esters. The esterifying activity of the mucosal enzymes for both Vitamin A and cholesterol increased progressively up to the end of the 5th week; the increase in esterification of cholesterol was more marked with respect to saturated fatty acids, as compared to the unsaturated ones. The pancreatic enzymes remained unaffected. It is suggested that one of the reasons for the accumulation of cholesterol esters in animal tissues may be the increased esterification of the sterol in the mucosa induced by dietary cholesterol.
Resumo:
The esterification of stearic acid with p-cresol using modified Indian bentonite clay catalysts has been reported. The reaction was studied over exchanged clays, acid activated clays, exchanged acid activated clays, aluminium pillared clay, aluminium pillared acid activated clay, molecular sieve Al-MCM-41, zeolite H beta, ZrO2, S-ZrO2, p-TSA, montmorillonite K10, and montmorillonite KSF in o-xylene for 6 h. The catalysts were characterized by X-ray diffraction and surface area measurements. The acidity was determined by n-butylamine back-titration method and DRIFTS after pyridine adsorption. Acid activated Indian bentonite (AAIB) was found to be a better catalyst compared to other catalysts in the esterification of stearic acid with p-cresol.