985 resultados para steel protection
Resumo:
Four types of stainless steel coatings prepared by a high velocity oxy-fuel spraying system (HVOF) were studied. Differences among coated steels were related to the spraying parameters, which influenced the behavior of the samples against the corrosion. The electrochemical behavior of the stainless steel coatings was strongly influenced by porosity, the presence of micro- and macro-cracks, and also of un-melted particles. Once the electrolyte reached the steel substrate via these defects, the galvanic pair formed between the coating and substrate-accelerated corrosion, leading to the depletion of the coating. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The electrochemical behavior of a coating of cobalt oxide on cold-rolled steel in alkaline sodium sulfate was Studied using the electrochemical techniques of open-circuit potential measurements and electrochemical impedance spectroscopy. The coating was prepared at different annealing temperatures ranging from 350 to 750 degreesC and characterized by SEM, EDX and XRD. Below 550 degreesC the composition of the coating was basically of Co3O4. At 750 degreesC CoO was formed and big cracks appeared on the film exposing an inner layer of iron oxides. Analysis of the EIS data is very difficult because of the complexity of the interface structure. It can be inferred that the charge transfer resistance of the coatings prepared at 350 and 450 C were higher than those for the coatings prepared at temperatures above 550 degreesC. (C) 2002 Published by Elsevier B.V. Ltd.
Resumo:
The electrochemical behaviour of coated Cr3C2-NiCr steel in aerated 0.5 M H2SO4 solution was studied by means of electrochemical a.c. and d.c. measurements. A complete structural characterization of the coated steel before and after electrochemical tests was also carried out to access the corrosion mechanism of coated steel, electrolyte penetration through the coating, and to confirm the results obtained using electrochemical techniques. Two types of Cr3C2-NiCr coatings produced by a high velocity oxy-fuel spraying system (HVOF) were studied. Differences between coated steels are related to the spraying parameters reflecting their behaviour against corrosion phenomena. The electrochemical behaviour of the coated steel was strongly influenced by porosity and the presence of microcracks in the coating. Once the electrolyte reaches the steel substrate, it corrodes in a galvanic manner resulting in coating detachment from the steel.
Resumo:
The barrier effect and the performance of an organic–inorganic hybrid (OIH) sol–gel coating are highlydependent on the coating deposition method as well as processing conditions. In this work, studies onthe influence of experimental parameters using the dip coating method were performed. Factors suchas residence time (Rt), a curing step between each dip step and the number of layers of sol–gel OIHfilms deposited on HDGS to prevent corrosion in highly alkaline environments were studied. These OIHcoatings were obtained using a functionalized siloxane, 3-isociantepropyltriethoxysilane that reactedwith a diamino-functionalized oligopolymer (Jeffamine®D-230). The barrier efficiency of OIH coatings insimulated concrete pore solutions (SCPS) was assessed in the first moments of contact, by electrochemicalimpedance spectroscopy and potentiodynamic methods. The durability and stability of the OIH coatings inSCPS was monitored during eight days by macrocell current density. The morphological characterizationof the surface was performed by scanning electronic microscopy before and after exposure to SCPS.Glow discharge optical emission spectroscopy was used to obtain quantitative composition profiles toinvestigate the thickness of the OIH coatings as a function of the number of layers deposited and theinfluence of the Rt in the coating thickness.
Resumo:
Organic-inorganic hybrid (OIH) sol-gel coatings based on ureasilicates (U(X)) have promising properties for use as eco-friendly coatings on hot dip galvanized steel (HDGS) and may be considered potential substitutes for pre-treatment systems containing Cr(VI). These OIH coatings reduce corrosion activity during the initial stages of contact of the HDGS samples with highly alkaline environments (cementitious media) and allow the mitigation of harmful effects of an initial excessive reaction between cement pastes and the zinc layer. However, the behavior of HDGS coated with U(X) in the presence of chloride ions has never been reported. In this paper, the performance of HDGS coated with five different U(X) coatings was assessed by electrochemical measurements in chloride-contaminated simulated concrete pore solution (SCPS). U(X) sol-gel coatings were produced and deposited on HDGS by a dip coating method. The coatings performance was evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization curves measurements, macrocell current density and polarization resistance in contact with chloride-contaminated SCPS. The SEM/EDS analyses of the coatings before and after the tests were also performed. The results showed that the HDGS samples coated with the OIH coatings exhibited enhanced corrosion resistance to chloride ions when compared to uncoated galvanized steel.
Resumo:
Artigo completo publicado na revista "Journal of The Electrochemical Society" 160:10 (2013) 467-479 e disponível no RepositóriUM em: http://hdl.handle.net/1822/33855
Resumo:
Artigo completo publicado na revista "Journal of The Electrochemical Society" 161:6 (2014) C349-C362 e disponível no RepositóriUM em: http://hdl.handle.net/1822/33784
Resumo:
Artigo completo publicado na revista "Journal of The Electrochemical Society" 161:6 (2014) C349-C362 e disponível no RepositóriUM em: http://hdl.handle.net/1822/33784. Errata disponível no RepositóriUM em: http://hdl.handle.net/1822/40064. (Publisher’s note: An erratum that addressed the errors in Figure 9 was originally published on Dec. 10, 2014, however the graphs in that erratum were not correct.)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
La norma UNE-EN 13374 “Sistemas provisionales de protección de borde. Especificaciones del producto, métodos de ensayo” (1) clasifica los sistemas provisionales de protección de borde (SPPB) en tres clases (A, B y C), en función del ángulo de la superficie de trabajo y de la altura de caída de la persona a proteger. Los sistemas clase A son los indicados cuando la inclinación de la superficie de trabajo es menor de 10º. La norma establece los requisitos de flecha y de resistencia de los SPPB. Los requisitos se pueden comprobar tanto analítica como experimentalmente. El objetivo del trabajo ha sido la evaluación del comportamiento de los SPPB utilizados habitualmente en las obras y establecer los cambios necesarios para que cumplan con la norma UNE-EN 13374. Para ello se han evaluado analítica y experimentalmente tres SPPB clase A, fabricados con acero S235. Los resultados obtenidos muestran que, el sistema empleado de forma habitual en obras no supera los requisitos de la norma ni analítica ni experimentalmente. El tercer sistema supera los requisitos con las dos metodologías de análisis. El segundo sistema supera los requisitos cuando la evaluación se realiza analíticamente pero no cuando la vía utilizada es la experimental.
Resumo:
"May 1969."
Resumo:
"Metallurgy and Ceramics."
Resumo:
Mode of access: Internet.