696 resultados para steel casting
Resumo:
The machining of super duplex stainless steel castings is usually complicated by the difficulty involved in maintaining the dimensional tolerances required for given applications. Internal stresses originating from the solidification process and from subsequent heat treatments reach levels that exceed the material`s yield strength, promoting plastic strain. Stress relief heat treatments at 520 degrees C for 2 h are an interesting option to solve this problem, but because these materials present a thermodynamically metastable condition, a few precautions should be taken. The main objective of this work was to demonstrate that, after solution annealing at 1130 degrees C and water quenching, stress relief at 520 degrees C for 2 h did not alter the duplex microstructure or impair the pitting corrosion resistance of ASTM A890/A890M Grade 6A steel. This finding was confirmed by microstructural characterization techniques, including light optical and scanning electron microscopy, and X-ray diffraction. Corrosion potential measurements in synthetic sea water containing 20,000 ppm of chloride ions were also conducted at three temperatures: 5 degrees C, 25 degrees C and 60 degrees C. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The distribution of delta ferrite fraction was measured with the magnetic method in specimens of different stainless steel compositions cast by the investment casting (lost wax) process. Ferrite fraction measurements published in the literature for stainless steel cast samples were added to the present work data, enabling an extensive analysis about practical methods to calculate delta ferrite fractions in stainless steel castings. Nineteen different versions of practical methods were formed using Schaeffler, DeLong, and Siewert diagrams and the nickel and chromium equivalent indexes suggested by several authors. These methods were evaluated by a detailed statistical analysis, showing that the Siewert diagram, including its equivalent indexes and iso-ferrite lines, gives the lowest relative errors between calculated and measured delta ferrite fractions. Although originally created for stainless steel welds, this diagram gives relative errors lower than those for the current ASTM standard method (800/A 800M-01), developed to predict ferrite fractions in stainless steel castings. Practical methods originated from a combination of different chromium/nickel equivalent indexes and the iso-ferrite lines from Schaeffler diagram give the lowest relative errors when compared with combinations using other iso-ferrite line diagrams. For the samples cast in the present work, an increase in cooling rate from 0.78 to 2.7 K/s caused a decrease in the delta ferrite fraction, but a statistical hypothesis test revealed that this effect is significant in only 50% of the samples that have ferrite in their microstructures.
Resumo:
Teollisuuden tuotannon eri prosessien optimointi on hyvin ajankohtainen aihe. Monet ohjausjärjestelmät ovat ajalta, jolloin tietokoneiden laskentateho oli hyvin vaatimaton nykyisiin verrattuna. Työssä esitetään tuotantoprosessi, joka sisältää teräksen leikkaussuunnitelman muodostamisongelman. Valuprosessi on yksi teräksen valmistuksen välivaiheita. Siinä sopivaan laatuun saatettu sula teräs valetaan linjastoon, jossa se jähmettyy ja leikataan aihioiksi. Myöhemmissä vaiheissa teräsaihioista muokataan pienempiä kokonaisuuksia, tehtaan lopputuotteita. Jatkuvavaletut aihiot voidaan leikata tilauskannasta riippuen monella eri tavalla. Tätä varten tarvitaan leikkaussuunnitelma, jonka muodostamiseksi on ratkaistava sekalukuoptimointiongelma. Sekalukuoptimointiongelmat ovat optimoinnin haastavin muoto. Niitä on tutkittu yksinkertaisempiin optimointiongelmiin nähden vähän. Nykyisten tietokoneiden laskentateho on kuitenkin mahdollistanut raskaampien ja monimutkaisempien optimointialgoritmien käytön ja kehittämisen. Työssä on käytetty ja esitetty eräs stokastisen optimoinnin menetelmä, differentiaalievoluutioalgoritmi. Tässä työssä esitetään teräksen leikkausoptimointialgoritmi. Kehitetty optimointimenetelmä toimii dynaamisesti tehdasympäristössä käyttäjien määrittelemien parametrien mukaisesti. Työ on osa Syncron Tech Oy:n Ovako Bar Oy Ab:lle toimittamaa ohjausjärjestelmää.
Resumo:
Työssä tutkittiin teräsvalujen hitsattavuutta sekä kirjallisuuden että laboratoriokokeiden avulla. Työssä tarkasteltiin erityisesti valuterästä G-25CrMo4 ja tutkittiin seikkoja, jotka vaikuttavat kyseisen materiaalin hitsauksen onnistumiseen.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This dissertation addresses the main theme the use of desirability tool in optimizing a process with multiple response variables. The current scenario of strong bids to conquer the consumer market makes it necessary to develop improvements for better process performance as a whole, is to cut costs, increase efficiency or effectiveness. Thus, the use of methods to assist in this process is becoming increasingly feasible. This study used the MINITAB program and the data of the doctoral thesis of Dr. Luiz Henrique Dias Alves, in order to compare the results obtained in both studies. As a result, after applying the desirability method, simulated to optimize two responses variables regarding the formation of voids related to solidification in ABNT 1030 steel casting process. Thus, it was possible to evaluate the behavior of the variables with the variation of parameters of the desirability function
Resumo:
This dissertation addresses the main theme the use of desirability tool in optimizing a process with multiple response variables. The current scenario of strong bids to conquer the consumer market makes it necessary to develop improvements for better process performance as a whole, is to cut costs, increase efficiency or effectiveness. Thus, the use of methods to assist in this process is becoming increasingly feasible. This study used the MINITAB program and the data of the doctoral thesis of Dr. Luiz Henrique Dias Alves, in order to compare the results obtained in both studies. As a result, after applying the desirability method, simulated to optimize two responses variables regarding the formation of voids related to solidification in ABNT 1030 steel casting process. Thus, it was possible to evaluate the behavior of the variables with the variation of parameters of the desirability function
Resumo:
Bridges are a critical part of North America’s transportation network that need to be assessed frequently to inform bridge management decision making. Visual inspections are usually implemented for this purpose, during which inspectors must observe and report any excess displacements or vibrations. Unfortunately, these visual inspections are subjective and often highly variable and so a monitoring technology that can provide quantitative measurements to supplement inspections is needed. Digital Image Correlation (DIC) is a novel monitoring technology that uses digital images to measure displacement fields without any contact with the bridge. In this research, DIC and accelerometers were used to investigate the dynamic response of a railway bridge reported to experience large lateral displacements. Displacements were estimated using accelerometer measurements and were compared to DIC measurements. It was shown that accelerometers can provide reasonable estimates of displacement for zero-mean lateral displacements. By comparing measurements in the girder and in the piers, it was shown that for the bridge monitored, the large lateral displacements originated in the steel casting bearings positioned above the piers, and not in the piers themselves. The use of DIC for evaluating the effectiveness of rehabilitation of the LaSalle Causeway lift bridge in Kingston, Ontario was also investigated. Vertical displacements were measured at midspan and at the lifting end of the bridge during a static test and under dynamic live loading. The bridge displacements were well within the operating limits, however a gap at the lifting end of the bridge was identified. Rehabilitation of the bridge was conducted and by comparing measurements before and after rehabilitation, it was shown that the gap was successfully closed. Finally, DIC was used to monitor the midspan vertical and lateral displacements in a monitoring campaign of five steel rail bridges. DIC was also used to evaluate the effectiveness of structural rehabilitation of the lateral bracing of a bridge. Simple finite element models are developed using DIC measurements of displacement. Several lessons learned throughout this monitoring campaign are discussed in the hope of aiding future researchers.
Resumo:
Identification of the tensile constitutive behaviour of Fibre Reinforced Concrete (FRC) represents an important aspect of the design of structural elements using this material. Although an important step has been made with the introduction of guidance for the design with regular FRC in the recently published fib Model Code 2010, a better understanding of the behaviour of this material is still necessary, mainly for that with self-compacting properties. This work presents an experimental investigation employing Steel Fibre Self-Compacting Concrete (SFRSCC) to cast thin structural elements. A new test method is proposed for assessing the post-cracking behaviour and the results obtained with the proposed test method are compared with the ones resulted from the standard three-point bending tests (3PBT). Specimens extracted from a sandwich panel consisting of SFRSCC layers are also tested. The mechanical properties of SFRSCC are correlated to the fibre distribution by analysing the results obtained with the different tests. Finally, the stress-crack width constitutive law proposed by the fib Model Code 2010 is analysed in light of the experimental results.
Resumo:
This paper presents some experimental data on the size and position of pipes steel ingots as exemp1ified by casting wax under various conditions and noting the size and location of the pipes formed. The results tend to show that the length of the pipe is decreased by: 1. Slow casting 2. By casting large end up instead of down 3. By retarding the cooling of the top
Resumo:
The slip-casting technique, which is successfully employed in the ceramic industry, was utilized to produce sintered stainless steel components experimentally. The procedure used is described, along with an evaluation of the physical and mechanical properties of the samples produced. Specimens were made with properties comparable to those of wrought stainless steel and of cold pressed and sintered steel powder.
Resumo:
This thesis develops and tests various transient and steady-state computational models such as direct numerical simulation (DNS), large eddy simulation (LES), filtered unsteady Reynolds-averaged Navier-Stokes (URANS) and steady Reynolds-averaged Navier-Stokes (RANS) with and without magnetic field to investigate turbulent flows in canonical as well as in the nozzle and mold geometries of the continuous casting process. The direct numerical simulations are first performed in channel, square and 2:1 aspect rectangular ducts to investigate the effect of magnetic field on turbulent flows. The rectangular duct is a more practical geometry for continuous casting nozzle and mold and has the option of applying magnetic field either perpendicular to broader side or shorter side. This work forms the part of a graphic processing unit (GPU) based CFD code (CU-FLOW) development for magnetohydrodynamic (MHD) turbulent flows. The DNS results revealed interesting effects of the magnetic field and its orientation on primary, secondary flows (instantaneous and mean), Reynolds stresses, turbulent kinetic energy (TKE) budgets, momentum budgets and frictional losses, besides providing DNS database for two-wall bounded square and rectangular duct MHD turbulent flows. Further, the low- and high-Reynolds number RANS models (k-ε and Reynolds stress models) are developed and tested with DNS databases for channel and square duct flows with and without magnetic field. The MHD sink terms in k- and ε-equations are implemented as proposed by Kenjereš and Hanjalić using a user defined function (UDF) in FLUENT. This work revealed varying accuracies of different RANS models at different levels. This work is useful for industry to understand the accuracies of these models, including continuous casting. After realizing the accuracy and computational cost of RANS models, the steady-state k-ε model is then combined with the particle image velocimetry (PIV) and impeller probe velocity measurements in a 1/3rd scale water model to study the flow quality coming out of the well- and mountain-bottom nozzles and the effect of stopper-rod misalignment on fluid flow. The mountain-bottom nozzle was found more prone to the longtime asymmetries and higher surface velocities. The left misalignment of stopper gave higher surface velocity on the right leading to significantly large number of vortices forming behind the nozzle on the left. Later, the transient and steady-state models such as LES, filtered URANS and steady RANS models are combined with ultrasonic Doppler velocimetry (UDV) measurements in a GaInSn model of typical continuous casting process. LES-CU-LOW is the fastest and the most accurate model owing to much finer mesh and a smaller timestep. This work provided a good understanding on the performance of these models. The behavior of instantaneous flows, Reynolds stresses and proper orthogonal decomposition (POD) analysis quantified the nozzle bottom swirl and its importance on the turbulent flow in the mold. Afterwards, the aforementioned work in GaInSn model is extended with electromagnetic braking (EMBr) to help optimize a ruler-type brake and its location for the continuous casting process. The magnetic field suppressed turbulence and promoted vortical structures with their axis aligned with the magnetic field suggesting tendency towards 2-d turbulence. The stronger magnetic field at the nozzle well and around the jet region created large scale and lower frequency flow behavior by suppressing nozzle bottom swirl and its front-back alternation. Based on this work, it is advised to avoid stronger magnetic field around jet and nozzle bottom to get more stable and less defect prone flow.