946 resultados para statistical classification
Resumo:
Low noise surfaces have been increasingly considered as a viable and cost-effective alternative to acoustical barriers. However, road planners and administrators frequently lack information on the correlation between the type of road surface and the resulting noise emission profile. To address this problem, a method to identify and classify different types of road pavements was developed, whereby near field road noise is analyzed using statistical learning methods. The vehicle rolling sound signal near the tires and close to the road surface was acquired by two microphones in a special arrangement which implements the Close-Proximity method. A set of features, characterizing the properties of the road pavement, was extracted from the corresponding sound profiles. A feature selection method was used to automatically select those that are most relevant in predicting the type of pavement, while reducing the computational cost. A set of different types of road pavement segments were tested and the performance of the classifier was evaluated. Results of pavement classification performed during a road journey are presented on a map, together with geographical data. This procedure leads to a considerable improvement in the quality of road pavement noise data, thereby increasing the accuracy of road traffic noise prediction models.
Resumo:
We describe an investigation into how Massey University’s Pollen Classifynder can accelerate the understanding of pollen and its role in nature. The Classifynder is an imaging microscopy system that can locate, image and classify slide based pollen samples. Given the laboriousness of purely manual image acquisition and identification it is vital to exploit assistive technologies like the Classifynder to enable acquisition and analysis of pollen samples. It is also vital that we understand the strengths and limitations of automated systems so that they can be used (and improved) to compliment the strengths and weaknesses of human analysts to the greatest extent possible. This article reviews some of our experiences with the Classifynder system and our exploration of alternative classifier models to enhance both accuracy and interpretability. Our experiments in the pollen analysis problem domain have been based on samples from the Australian National University’s pollen reference collection (2,890 grains, 15 species) and images bundled with the Classifynder system (400 grains, 4 species). These samples have been represented using the Classifynder image feature set.We additionally work through a real world case study where we assess the ability of the system to determine the pollen make-up of samples of New Zealand honey. In addition to the Classifynder’s native neural network classifier, we have evaluated linear discriminant, support vector machine, decision tree and random forest classifiers on these data with encouraging results. Our hope is that our findings will help enhance the performance of future releases of the Classifynder and other systems for accelerating the acquisition and analysis of pollen samples.
Resumo:
The purpose of this Thesis is to develop a robust and powerful method to classify galaxies from large surveys, in order to establish and confirm the connections between the principal observational parameters of the galaxies (spectral features, colours, morphological indices), and help unveil the evolution of these parameters from $z \sim 1$ to the local Universe. Within the framework of zCOSMOS-bright survey, and making use of its large database of objects ($\sim 10\,000$ galaxies in the redshift range $0 < z \lesssim 1.2$) and its great reliability in redshift and spectral properties determinations, first we adopt and extend the \emph{classification cube method}, as developed by Mignoli et al. (2009), to exploit the bimodal properties of galaxies (spectral, photometric and morphologic) separately, and then combining together these three subclassifications. We use this classification method as a test for a newly devised statistical classification, based on Principal Component Analysis and Unsupervised Fuzzy Partition clustering method (PCA+UFP), which is able to define the galaxy population exploiting their natural global bimodality, considering simultaneously up to 8 different properties. The PCA+UFP analysis is a very powerful and robust tool to probe the nature and the evolution of galaxies in a survey. It allows to define with less uncertainties the classification of galaxies, adding the flexibility to be adapted to different parameters: being a fuzzy classification it avoids the problems due to a hard classification, such as the classification cube presented in the first part of the article. The PCA+UFP method can be easily applied to different datasets: it does not rely on the nature of the data and for this reason it can be successfully employed with others observables (magnitudes, colours) or derived properties (masses, luminosities, SFRs, etc.). The agreement between the two classification cluster definitions is very high. ``Early'' and ``late'' type galaxies are well defined by the spectral, photometric and morphological properties, both considering them in a separate way and then combining the classifications (classification cube) and treating them as a whole (PCA+UFP cluster analysis). Differences arise in the definition of outliers: the classification cube is much more sensitive to single measurement errors or misclassifications in one property than the PCA+UFP cluster analysis, in which errors are ``averaged out'' during the process. This method allowed us to behold the \emph{downsizing} effect taking place in the PC spaces: the migration between the blue cloud towards the red clump happens at higher redshifts for galaxies of larger mass. The determination of $M_{\mathrm{cross}}$ the transition mass is in significant agreement with others values in literature.
Resumo:
This paper present an environmental contingency forecasting tool based on Neural Networks (NN). Forecasting tool analyzes every hour and daily Sulphur Dioxide (SO2) concentrations and Meteorological data time series. Pollutant concentrations and meteorological variables are self-organized applying a Self-organizing Map (SOM) NN in different classes. Classes are used in training phase of a General Regression Neural Network (GRNN) classifier to provide an air quality forecast. In this case a time series set obtained from Environmental Monitoring Network (EMN) of the city of Salamanca, Guanajuato, México is used. Results verify the potential of this method versus other statistical classification methods and also variables correlation is solved.
Resumo:
Objective: The objectives of this article are to explore the extent to which the International Statistical Classification of Diseases and Related Health Problems (ICD) has been used in child abuse research, to describe how the ICD system has been applied and to assess factors affecting the reliability of ICD coded data in child abuse research.----- Methods: PubMed, CINAHL, PsychInfo and Google Scholar were searched for peer reviewed articles written since 1989 that used ICD as the classification system to identify cases and research child abuse using health databases. Snowballing strategies were also employed by searching the bibliographies of retrieved references to identify relevant associated articles. The papers identified through the search were independently screened by two authors for inclusion, resulting in 47 studies selected for the review. Due to heterogeneity of studies metaanalysis was not performed.----- Results: This paper highlights both utility and limitations of ICD coded data. ICD codes have been widely used to conduct research into child maltreatment in health data systems. The codes appear to be used primarily to determine child maltreatment patterns within identified diagnoses or to identify child maltreatment cases for research.----- Conclusions: A significant impediment to the use of ICD codes in child maltreatment research is the under-ascertainment of child maltreatment by using coded data alone. This is most clearly identified and, to some degree, quantified, in research where data linkage is used. Practice Implications: The importance of improved child maltreatment identification will assist in identifying risk factors and creating programs that can prevent and treat child maltreatment and assist in meeting reporting obligations under the CRC.
Resumo:
Background The implementation of the Australian Consumer Law in 2011 highlighted the need for better use of injury data to improve the effectiveness and responsiveness of product safety (PS) initiatives. In the PS system, resources are allocated to different priority issues using risk assessment tools. The rapid exchange of information (RAPEX) tool to prioritise hazards, developed by the European Commission, is currently being adopted in Australia. Injury data is required as a basic input to the RAPEX tool in the risk assessment process. One of the challenges in utilising injury data in the PS system is the complexity of translating detailed clinical coded data into broad categories such as those used in the RAPEX tool. Aims This study aims to translate hospital burns data into a simplified format by mapping the International Statistical Classification of Disease and Related Health Problems (Tenth Revision) Australian Modification (ICD-10-AM) burn codes into RAPEX severity rankings, using these rankings to identify priority areas in childhood product-related burns data. Methods ICD-10-AM burn codes were mapped into four levels of severity using the RAPEX guide table by assigning rankings from 1-4, in order of increasing severity. RAPEX rankings were determined by the thickness and surface area of the burn (BSA) with information extracted from the fourth character of T20-T30 codes for burn thickness, and the fourth and fifth characters of T31 codes for the BSA. Following the mapping process, secondary data analysis of 2008-2010 Queensland Hospital Admitted Patient Data Collection (QHAPDC) paediatric data was conducted to identify priority areas in product-related burns. Results The application of RAPEX rankings in QHAPDC burn data showed approximately 70% of paediatric burns in Queensland hospitals were categorised under RAPEX levels 1 and 2, 25% under RAPEX 3 and 4, with the remaining 5% unclassifiable. In the PS system, prioritisations are made to issues categorised under RAPEX levels 3 and 4. Analysis of external cause codes within these levels showed that flammable materials (for children aged 10-15yo) and hot substances (for children aged <2yo) were the most frequently identified products. Discussion and conclusions The mapping of ICD-10-AM burn codes into RAPEX rankings showed a favourable degree of compatibility between both classification systems, suggesting that ICD-10-AM coded burn data can be simplified to more effectively support PS initiatives. Additionally, the secondary data analysis showed that only 25% of all admitted burn cases in Queensland were severe enough to trigger a PS response.
Resumo:
Background The implementation of the Australian Consumer Law in 2011 highlighted the need for better use of injury data to improve the effectiveness and responsiveness of product safety (PS) initiatives. In the PS system, resources are allocated to different priority issues using risk assessment tools. The rapid exchange of information (RAPEX) tool to prioritise hazards, developed by the European Commission, is currently being adopted in Australia. Injury data is required as a basic input to the RAPEX tool in the risk assessment process. One of the challenges in utilising injury data in the PS system is the complexity of translating detailed clinical coded data into broad categories such as those used in the RAPEX tool. Aims This study aims to translate hospital burns data into a simplified format by mapping the International Statistical Classification of Disease and Related Health Problems (Tenth Revision) Australian Modification (ICD-10-AM) burn codes into RAPEX severity rankings, using these rankings to identify priority areas in childhood product-related burns data. Methods ICD-10-AM burn codes were mapped into four levels of severity using the RAPEX guide table by assigning rankings from 1-4, in order of increasing severity. RAPEX rankings were determined by the thickness and surface area of the burn (BSA) with information extracted from the fourth character of T20-T30 codes for burn thickness, and the fourth and fifth characters of T31 codes for the BSA. Following the mapping process, secondary data analysis of 2008-2010 Queensland Hospital Admitted Patient Data Collection (QHAPDC) paediatric data was conducted to identify priority areas in product-related burns. Results The application of RAPEX rankings in QHAPDC burn data showed approximately 70% of paediatric burns in Queensland hospitals were categorised under RAPEX levels 1 and 2, 25% under RAPEX 3 and 4, with the remaining 5% unclassifiable. In the PS system, prioritisations are made to issues categorised under RAPEX levels 3 and 4. Analysis of external cause codes within these levels showed that flammable materials (for children aged 10-15yo) and hot substances (for children aged <2yo) were the most frequently identified products. Discussion and conclusions The mapping of ICD-10-AM burn codes into RAPEX rankings showed a favourable degree of compatibility between both classification systems, suggesting that ICD-10-AM coded burn data can be simplified to more effectively support PS initiatives. Additionally, the secondary data analysis showed that only 25% of all admitted burn cases in Queensland were severe enough to trigger a PS response.
Resumo:
This paper describes the limitations of using the International Statistical Classification of Diseases and Related Health Problems, Tenth Revision, Australian Modification (ICD-10-AM) to characterise patient harm in hospitals. Limitations were identified during a project to use diagnoses flagged by Victorian coders as hospital-acquired to devise a classification of 144 categories of hospital acquired diagnoses (the Classification of Hospital Acquired Diagnoses or CHADx). CHADx is a comprehensive data monitoring system designed to allow hospitals to monitor their complication rates month-to-month using a standard method. Difficulties in identifying a single event from linear sequences of codes due to the absence of code linkage were the major obstacles to developing the classification. Obstetric and perinatal episodes also presented challenges in distinguishing condition onset, that is, whether conditions were present on admission or arose after formal admission to hospital. Used in the appropriate way, the CHADx allows hospitals to identify areas for future patient safety and quality initiatives. The value of timing information and code linkage should be recognised in the planning stages of any future electronic systems.
Resumo:
The Baltic Sea was studied with respect to selected organic contaminants and their ecotoxicology. The research consisted of analyses of total hydrocarbons, polycyclic aromatic hydrocarbons, bile metabolites, hepatic ethoxyresorufin-O-deethylase (EROD) activity, polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). The contaminants were measured from various matrices, such as seawater, sediment and biota. The methods of analysis were evaluated and refined to comparability of the results. Polyaromatic hydrocarbons, originating from petroleum, are known to be among the most harmful substances to the marine environment. In Baltic subsurface water, seasonal dependence of the total hydrocarbon concentrations (THCs) was seen. Although concentrations of parent polycyclic aromatic hydrocarbons (PAHs) in sediment surface varied between 64 and 5161 ug kg-1 (dw), concentrations above 860 ug kg-1 (dw) were found in all the studied sub-basins of the Baltic Sea. Concentrations commonly considered to substantially increase the risk of liver disease and reproductive impairment in fish, as well as potential effects on growth (above 1000 ug kg-1 dw), were found in all the studied sub-basins of the Baltic Sea except Kattegat. Thus, considerable pollution in sediments was indicated. In bivalves, the sums of 12 PAHs varied on a wet weight basis between 44 and 298 ug kg-1 (ww). The predominant PAHs were high molecular weight and the PAH profiles of M. balthica differed from those found in sediment from the same area. The PAHs were both pyrolytic and petrogenic in origin, and a contribution from diesel engines was found, which indicates pollution of the Baltic Sea, most likely caused by the steadily increasing shipping in the area. The HPLC methods developed for hepatic EROD activity and bile metabolite measurements proved to be fast and suitable for the study of biological effects. A mixed function oxygenase enzyme system in Baltic Sea perch collected from the Gulf of Finland was induced slightly: EROD activity in perch varied from 0.30 14 pmol min-1 mg-1 protein. This range can be considered to be comparable to background values. Recent PAH exposure was also indicated by enhanced levels (213 and 1149 ug kg-1) of the bile metabolite 1-hydroxypyrene. No correlation was indicated between hepatic EROD activity and concentration of 1-hydroxypyrene in bile. PCBs and OCPs were observed in Baltic Sea sediment, bivalves and herring. Sums of seven CBs in surface sediment (0 5 cm) ranged from 0.04 to 6.2 ug kg-1 (dw) and sums of three DDTs from 0.13 to 5.0 ug kg-1 (dw). The highest levels of contaminants were found in the most eastern area of the Gulf of Finland where the highest total carbon and nitrogen content was found and where the lowest percentage proportion of p,p -DDT was found. The highest concentrations of CBs and the lowest concentration of DDTs were found in M. balthica from the Gulf of Finland. The highest levels of DDTs were found in M. balthica from the Hanö Bight, which is the outer part of the Bornholm Basin close to the Swedish mainland. In bivalves, the sums of seven CBs were 72 108 ug kg-1 (lw) and the sums of three DDTs were 66 139 ug kg-1 (lw). Results from temporal trend monitoring showed, that during the period 1985 2002, the concentrations of seven CBs in two-year-old female Baltic herring were clearly decreased, from 9 16 to 2 6 ug kg-1 (ww) in the northern Baltic Sea. At the same time, concentrations of three DDTs declined from 8 15 to 1 5 ug kg-1 (ww). The total concentration of the fat-soluble CBs and DDTs in Baltic herring muscle was shown to be age-dependent; the average concentrations in ten-year-old Baltic herring were three to five-fold higher than in two-year-old herring. In Baltic herring and bivalves, as well as in surface sediments, CB 138 and CB153 were predominant among CBs, whereas among DDTs p,p'-DDD predominated in sediment and p,p'-DDE in bivalves and Baltic herring muscle. Baltic Sea sediments are potential sources of contaminants that may become available for bioaccumulation. Based on ecotoxicological assessment criteria, cause for concern regarding CBs in sediments was indicated for the Gulf of Finland and the northern Baltic Proper, and for the northern Baltic Sea regarding CBs in Baltic herring more than two years old. Statistical classification of selected organic contaminants indicated high-level contamination for p,p'-DDT, p,p'-DDD, p,p'-DDE, total DDTs, HCB, CB118 and CB153 in muscle of Baltic herring in age groups two to ten years; in contrast, concentrations of a-HCH and g-HCH were found to be moderate. The concentrations of DDTs and CBs in bivalves is sufficient to cause biological effects, and demonstrates that long-term biological effects are still possible in the case of DDTs in the Hanö Bight.
Resumo:
The LIGO and Virgo gravitational-wave observatories are complex and extremely sensitive strain detectors that can be used to search for a wide variety of gravitational waves from astrophysical and cosmological sources. In this thesis, I motivate the search for the gravitational wave signals from coalescing black hole binary systems with total mass between 25 and 100 solar masses. The mechanisms for formation of such systems are not well-understood, and we do not have many observational constraints on the parameters that guide the formation scenarios. Detection of gravitational waves from such systems — or, in the absence of detection, the tightening of upper limits on the rate of such coalescences — will provide valuable information that can inform the astrophysics of the formation of these systems. I review the search for these systems and place upper limits on the rate of black hole binary coalescences with total mass between 25 and 100 solar masses. I then show how the sensitivity of this search can be improved by up to 40% by the the application of the multivariate statistical classifier known as a random forest of bagged decision trees to more effectively discriminate between signal and non-Gaussian instrumental noise. I also discuss the use of this classifier in the search for the ringdown signal from the merger of two black holes with total mass between 50 and 450 solar masses and present upper limits. I also apply multivariate statistical classifiers to the problem of quantifying the non-Gaussianity of LIGO data. Despite these improvements, no gravitational-wave signals have been detected in LIGO data so far. However, the use of multivariate statistical classification can significantly improve the sensitivity of the Advanced LIGO detectors to such signals.
Resumo:
A contribution to the preparation of a catalogue on fishing gear in use in Mozambique is given. The set of plans presented complies with the methodology adopted by FAO and is classified according to the International Standard Statistical Classification of Fishing Gear (ISSCFG - 1980).
Resumo:
It is a basic work to ascertain the parameters of rock mass for evaluation about stability of the engineering. Anisotropism、inhomogeneity and discontinuity characters of the rock mass arise from the existing of the structural plane. Subjected to water、weathering effect、off-loading, mechanical characters of the rock mass are greatly different from rock itself, Determining mechanical parameters of the rock mass becomes so difficult because of structure effect、dimension effect、rheological character, ‘Can’t give a proper parameter’ becomes one of big problems for theoretic analysis and numerical simulation. With the increment of project scale, appraising the project rock mass and ascertaining the parameters of rock mass becomes more and more important and strict. Consequently, researching the parameters of rock mass has important theoretical significance and actual meaning. The Jin-ping hydroelectric station is the first highest hyperbolic arch dam in the world under construction, the height of the dam is about 305m, it is the biggest hydroelectric station at lower reaches of Yalong river. The length of underground factory building is 204.52m, the total height of it is 68.83m, the maximum of span clearance is 28.90m. Large-scale excavation in the underground factory of Jin-ping hydroelectric station has brought many kinds of destructive phenomenon, such as relaxation、spilling, providing a precious chance for study of unloading parameter about rock mass. As we all know, Southwest is the most important hydroelectric power base in China, the construction of the hydroelectric station mostly concentrate at high mountain and gorge area, basically and importantly, we must be familiar with the physical and mechanical character of the rock mass to guarantee to exploit safely、efficiently、quickly, in other words, we must understand the strength and deformation character of the rock mass. Based on enough fieldwork of geological investigation, we study the parameter of unloading rock mass on condition that we obtain abundant information, which is not only important for the construction of Jin-ping hydroelectric station, but also for the construction of other big hydroelectric station similar with Jin-ping. This paper adopt geological analysis、test data analysis、experience analysis、theory research and Artificial Neural Networks (ANN) brainpower analysis to evaluate the mechanical parameter, the major production is as follows: (1)Through the excavation of upper 5-layer of the underground powerhouse and the statistical classification of the main joints fractures exposed, We believe that there are three sets of joints, the first group is lay fracture, the second group and the fourth group are steep fracture. These provide a strong foundation for the following calculation of and analysis; (2)According to the in-situ measurement about sound wave velocity、displacement and anchor stress, we analyses the effects of rock unloading effect,the results show a obvious time-related character and localization features of rock deformation. We determine the depth of excavation unloading of underground factory wall based on this. Determining the rock mass parameters according to the measurement about sound wave velocity with characters of low- disturbing、dynamic on the spot, the result can really reflect the original state, this chapter approximately the mechanical parameters about rock mass at each unloading area; (3)Based on Hoek-Brown experienced formula with geological strength index GSI and RMR method to evaluate the mechanical parameters of different degree weathering and unloading rock mass about underground factory, Both of evaluation result are more satisfied; (4)From the perspective of far-field stress, based on the stress field distribution ideas of two-crack at any load conditions proposed by Fazil Erdogan (1962),using the strain energy density factor criterion (S criterion) proposed by Xue changming(1972),we establish the corresponding relationship between far-field stress and crack tip stress field, derive the integrated intensity criterion formula under the conditions of pure tensile stress among two line coplanar intermittent jointed rock,and establish the corresponding intensity criterion for the exploratory attempt; (5)With artificial neural network, the paper focuses on the mechanical parameters of rock mass that we concerned about and the whole process of prediction of deformation parameters, discusses the prospect of applying in assessment about the parameters of rock mass,and rely on the catalog information of underground powerhouse of Jinping I Hydropower Station, identifying the rock mechanics parameters intellectually,discusses the sample selection, network design, values of basic parameters and error analysis comprehensively. There is a certain significance for us to set up a set of parameters evaluation system,which is in construction of large-scale hydropower among a group of marble mass.
Resumo:
Objective: The study aims to investigate associations between behavioural and psychological symptoms of dementia (BPSD) and abnormal premorbid personality traits. Methods: Data were obtained from 217 patients with a diagnosis of probable Alzheimer’s disease. Behavioural and psychological symptoms of late-onset dementia were assessed with the Neuropsychiatric Inventory. Premorbid personality traits were assessed using the Standardised Assessment of Personality. Abnormal premorbid personality traits were categorised with Diagnostic and Statistical Manual of Mental Disorders fourth edition and International Statistical Classification of Diseases and Related Health Problems—10 diagnostic criteria for personality disorders. Results: Abnormal premorbid personality traits were associated with increased behavioural and psychological symptoms in dementia. Cluster A (solitary/paranoid) premorbid personality traits were associated with anxiety, depression and hallucinations. Cluster C (anxious/dependent) traits were associated with a syndrome of depression. Conclusions: The presence of Clusters A (solitary/paranoid) and C (anxious/dependent) abnormal premorbid personality traits seems to affect the expression of certain behavioural and psychological symptoms in dementia, depression in particular. Copyright # 2016 John Wiley & Sons, Ltd