992 resultados para static potential
Resumo:
Here we study the effect of the nonminimal coupling j(mu)epsilon(munualpha)partial derivative(nu)A(alpha) on the static potential in multiflavor QED(3). Both cases of four and two components fermions are studied separately at leading order in the 1/N expansion. Although a nonlocal Chern-Simons term appears, in the four components case the photon is still massless leading to a confining logarithmic potential similar to the classical one. In the two components case, as expected, the parity breaking fermion mass term generates a traditional Chern-Simons term which makes the photon massive and we have a screening potential which vanishes at large intercharge distance. The extra nonminimal couplings have no important influence on the static potential at large intercharge distances. However, interesting effects show up at finite distances. In particular, for strong enough nonminimal coupling we may have a new massive pole in the photon propagator, while in the opposite limit there may be no poles at all in the irreducible case. We also found that, in general, the nonminimal couplings lead to a finite range repulsive force between charges of opposite signs.
Resumo:
Here we compute the static potential in scalar QED(3) at leading order in 1/Nf. We show that the addition of a non-minimal coupling of Pauli-type (is an element of(mu nu alpha)j(mu)partial derivative(nu)A(alpha)), although it breaks parity, it does not change the analytic structure of the photon propagator and consequently the static potential remains logarithmic ( confining) at large distances. The non-minimal coupling modifies the potential, however, at small charge separations giving rise to a repulsive force of short range between opposite sign charges, which is relevant for the existence of bound states. This effect is in agreement with a previous calculation based on Moller scattering, but differently from such calculation we show here that the repulsion appears independently of the presence of a tree level Chern-Simons term which rather affects the large distance behaviour of the potential turning it into a constant.
Resumo:
A supporting electrolyte based on lithium perchlorate has been functionalized with graphene (ionic liquid functionalized graphene (IFGR)) by facile electrochemical exfoliation of graphite rods in aq. LiClO4 solution. Poly(3,4-ethylenedioxythiophene) (PEDOT)-IFGR films were prepared by electropolymerization of EDOT monomer with IFGR as supporting electrolyte in ethanol at static potential of 1.5 V. The Raman, SEM, and XPS analysis of PEDOT-IFGR film confirmed the presence of functionalized graphene in the film. The PEDOT-IFGR films showed good electrochemical properties, better ionic and electrical conductivity, significant band gap, and excellent spectroelectrochemical and electrochromic properties. The electrical conductivity of PEDOT-IFGR film was measured as about 3968 S cm(-1). PEDOT-IFGR films at reduced state showed strong and broad absorption in the whole visible region and remarkable absorption at near-IR region. PEDOT-IFGR film showed electrochromic response between transmissive blue and darkish gray at redox potential. The color contrast (%T) between fully reduced and oxidized states of PEDOT-IFGR film is 25 % at lambda (max) of 485 nm. The optical switching stability of PEDOT-IFGR film has retained 80 % of its electroactivity even after 500 cycles.
Resumo:
In this work we discuss the effect of the quartic fermion self-interaction of Thirring type in QED in D=2 and D=3 dimensions. This is done through the computation of the effective action up to quadratic terms in the photon field. We analyze the corresponding nonlocal photon propagators nonperturbatively in k/m, where k is the photon momentum and m the fermion mass. The poles of the propagators were determined numerically by using the MATHEMATICA software. In D=2 there is always a massless pole whereas for strong enough Thirring coupling a massive pole may appear. For D=3 there are three regions in parameter space. We may have one or two massive poles or even no pole at all. The interquark static potential is computed analytically in D=2. We notice that the Thirring interaction contributes with a screening term to the confining linear potential of massive two-dimensional QED (QED(2)). In D=3 the static potential must be calculated numerically. The screening nature of the massive QED(3) prevails at any distance, indicating that this is a universal feature of D=3 electromagnetic interaction. Our results become exact for an infinite number of fermion flavors.
Resumo:
The measurability of the non-minimal coupling is discussed by considering the correction to the Newtonian static potential in the semiclassical approach. The coefficient of the gravitational Darwin term (GDT) gets redefined by the non-minimal torsion scalar couplings. Based on a similar analysis of the GDT in the effective field theory approach to non-minimal scalar, we conclude that for reasonable values of the couplings the correction is very small.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We studied e+-Li and e+-Na scattering using the close-coupling approximation in the static and coupled static expansion schemes. The effect of the positronium formation on the elastic channel is found to be strong in both cases. In the case of the lithium atom the effect is dramatic; the inclusion of the positronium formation channel transforms the purely repulsive effective e+-Li S wave (static) potential to a predominantly attractive (coupled static) potential. In this case, in the static model delta(0)-delta(infinity) = 0, whereas in the coupled static model delta(0)-delta(infinity)=pi. According to Levinson's theorem this suggests the presence of a S wave bound or continuum bound state in the e+-Li system.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thermal screening masses related to the conserved vector current are determined for the case that the current carries a non-zero Matsubara frequency, both in a weak-coupling approach and through lattice QCD. We point out that such screening masses are sensitive to the same infrared physics as light-cone real-time rates. In particular, on the perturbative side, the inhomogeneous Schrödinger equation determining screening correlators is shown to have the same general form as the equation implementing LPM resummation for the soft-dilepton and photon production rates from a hot QCD plasma. The static potential appearing in the equation is identical to that whose soft part has been determined up to NLO and on the lattice in the context of jet quenching. Numerical results based on this potential suggest that screening masses overshoot the free results (multiples of 2πT) more strongly than at zero Matsubara frequency. Four-dimensional lattice simulations in two-flavour QCD at temperatures of 250 and 340 MeV confirm the non-static screening masses at the 10% level. Overall our results lend support to studies of jet quenching based on the same potential at T ≳ 250 MeV.
Resumo:
SU(2) gauge theory with one Dirac flavor in the adjoint representation is investigated on a lattice. Initial results for the gluonic and mesonic spectrum, static potential from Wilson and Polyakov loops, and the anomalous dimension of the fermionic condensate from the Dirac mode number are presented. The results found are not consistent with conventional confining behavior, pointing instead tentatively towards a theory lying within or very near the onset of the conformal window, with the anomalous dimension of the fermionic condensate in the range 0.9≲γ∗≲0.95. The implications of our work for building a viable theory of strongly interacting dynamics beyond the standard model are discussed.
Resumo:
While the neural regions associated with facial identity recognition are considered to be well defined, the neural correlates of non-moving and moving images of facial emotion processing are less clear. This study examined the brain electrical activity changes in 26 participants (14 males M = 21.64, SD = 3.99; 12 females M = 24.42, SD = 4.36), during a passive face viewing task, a scrambled face task and separate emotion and gender face discrimination tasks. The steady state visual evoked potential (SSVEP) was recorded from 64-electrode sites. Consistent with previous research, face related activity was evidenced at scalp regions over the parieto-temporal region approximately 170 ms after stimulus presentation. Results also identified different SSVEP spatio-temporal changes associated with the processing of static and dynamic facial emotions with respect to gender, with static stimuli predominately associated with an increase in inhibitory processing within the frontal region. Dynamic facial emotions were associated with changes in SSVEP response within the temporal region, which are proposed to index inhibitory processing. It is suggested that static images represent non-canonical stimuli which are processed via different mechanisms to their more ecologically valid dynamic counterparts.
Resumo:
In this paper, we present a theoretical study of a Bose-Einstein condensate of interacting bosons in a quartic trap in one, two, and three dimensions. Using Thomas-Fermi approximation, suitably complemented by numerical solutions of the Gross-Pitaevskii equation, we study the ground sate condensate density profiles, the chemical potential, the effects of cross-terms in the quartic potential, temporal evolution of various energy components of the condensate, and width oscillations of the condensate. Results obtained are compared with corresponding results for a bose condensate in a harmonic confinement.
Resumo:
Synthetic tri-leaflet heart valves generally fail in the long-term use (more than 10 years). Tearing and calcification of the leaflets usually cause failure of these valves as a consequence of high tensile and bending stresses borne on the material. The primary purpose of this study was to explore the possibilities of a new polymer composite to be used as synthetic tri-leaflet heart valve material. This composite was comprised of polystyrene-polyisobutylene-polystyrene (Quatromer), a proprietary polymer, embedded with continuous polypropylene (PP) fibers. Quatromer had been found to be less likely to degrade in vivo than polyurethane. Moreover, it was postulated that a decrease in tears and perforations might result from fiber-reinforced leaflets reducing high stresses on the leaflets. The static and dynamic mechanical properties of the Quatromer/PP composite were compared with those of an implant-approved polyurethane (PU) for cardiovascular applications. Results show that the reinforcement of Quatromer with PP fibers improves both its static and dynamic properties as compared to the PU. Hence, this composite has the potential to be a more suitable material for synthetic tri-leaflet heart valves.
Resumo:
The potential of multiple distribution static synchronous compensators (DSTATCOMs) to improve the voltage profile of radial distribution networks has been reported in the literature by few authors. However, the operation of multiple DSTATCOMs across a distribution feeder may introduce control interactions and/or voltage instability. This study proposes a control scheme that alleviates interactions among controllers and enhances proper reactive power sharing among DSTATCOMs. A generalised mathematical model is presented to analyse the interactions among any number of DSTATCOMs in the network. The criterion for controller design is developed by conducting eigenvalue analysis on this mathematical model. The proposed control scheme is tested in time domain on a sample radial distribution feeder installed with multiple DSTATCOMs and test results are presented.
Resumo:
Capture fisheries and aquaculture have been a major source of food and providers of economic benefits to many communities around the world for a very long time. While the history of aquaculture or fish farming can be traced back for more than 2000 years in some corners of the globe, notably in China, Japan and the Mediterranean, this is not true everywhere, where in general, fish farming is a relatively new industry. Rapid human population growth and increasing urbanisation over the last 20 to 40 years has meant that while fish consumption has doubled globally, returns from capture fisheries have remained static or have declined due to overexploitation and rising pollution levels, with some fisheries either closing or becoming economically unviable. Data from studies suggest that this trend is unlikely to be reversed unless appropriate fisheries management allows depleted wild stocks to rebuild. This has occurred during a time when demand for fish products has grown, in part due to improved purchasing power in some developing countries and changing dietary habits where fish are now considered to have a positive impact on health. Based on the projected population growth over the next two decades, Food and Agricultural Organization (FAO) estimates that at least an additional 40 million tonnes of aquatic food will be required to maintain the current per capita consumption (FAO 2006).