982 resultados para spring frost
Resumo:
The future bloom and risk of blossom frosts for Malus domestica were projected using regional climate realizations and phenological (= impact) models. As climate impact projections are susceptible to uncertainties of climate and impact models and model concatenation, the significant horizon of the climate impact signal was analyzed by applying 7 impact models, including two new developments, on 13 climate realizations of the IPCC emission scenario A1B. Advancement of phenophases and a decrease in blossom frost risk for Lower Saxony (Germany) for early and late ripeners was determined by six out of seven phenological models. Single model/single grid point time series of bloom showed significant trends by 2021-2050 compared to 1971-2000, whereas the joint signal of all climate and impact models did not stabilize until 2043. Regarding blossom frost risk, joint projection variability exceeded the projected signal. Thus, blossom frost risk cannot be stated to be lower by the end of the 21st century despite a negative trend. As a consequence it is however unlikely to increase. Uncertainty of temperature, blooming date and blossom frost risk projection reached a minimum at 2078-2087. The projected phenophases advanced by 5.5 d K-1, showing partial compensation of delayed fulfillment of the winter chill requirement and faster completion of the following forcing phase in spring. Finally, phenological model performance was improved by considering the length of day.
Resumo:
Common ash (Fraxinus excelsior L.) is a medium-sized deciduous tree with large compound leaves that develop relatively late in spring. It flowers before leaf-buds burst and trees can carry male, female, or hermaphrodite flowers, or different combinations of the flower types. It grows throughout the European temperate zone, but is absent from the driest Mediterranean areas because it does not tolerate extended summer drought, and from the northern boreal regions, with its seedlings in particular being vulnerable to late spring frost. Soils exert a strong control on common ash distribution locally. The species grows best on fertile soils where soil pH exceeds 5.5. It rarely forms pure stands, more often it is found in small groups in mixed stands. Ash trees produce high quality timber that combines light weight, strength, and flexibility. Before the mass use of steel, it was used for a wide range of purposes, from agricultural implements to construction of boat and car frames. Today
Resumo:
High tunnels have been successfully used in Iowa to modify the climate and extend the growing season for tomatoes and other crops. Without the use of supplemental heat these ventilated, single layered plastic structures have typically increased average inside air temperatures by 10°F or more over outside temperatures for the growing season. The same tunnel, however, will only increase the daily low temperature by about 1 or 2°F, thus making early season high tunnel plantings without additional heat or plant coverings risky in Iowa. Fabric row covers are commonly used in high tunnels to provide for an additional 2-4°F frost protection during cold evenings. The recommended planting date for high tunnel tomatoes in Iowa has been about April 16 (4 to 5 weeks ahead of the recommended outside planting date). Producers are also advised to have some sort of plant covering material available to protect plants during a late spring frost.
Resumo:
Radiant spring frosts occurring during reproductive developmental stages can result in catastrophic yield loss for wheat producers. To better understand the spatial and temporal variability of frost, the occurrence and impact of frost events on rain-fed wheat production was estimated across the Australian wheatbelt for 1957–2013 using a 0.05 ° gridded weather data set. Simulated yield outcomes at 60 key locations were compared with those for virtual genotypes with different levels of frost tolerance. Over the last six decades, more frost events, later last frost day, and a significant increase in frost impact on yield were found in certain regions of the Australian wheatbelt, in particular in the South-East and West. Increasing trends in frost-related yield losses were simulated in regions where no significant trend of frost occurrence was observed, due to higher mean temperatures accelerating crop development and causing sensitive post-heading stages to occur earlier, during the frost risk period. Simulations indicated that with frost-tolerant lines the mean national yield could be improved by up to 20 through (i) reduced frost damage (~10 improvement) and (ii) the ability to use earlier sowing dates (adding a further 10 improvement). In the simulations, genotypes with an improved frost tolerance to temperatures 1 °C lower than the current 0 °C reference provided substantial benefit in most cropping regions, while greater tolerance (to 3 °C lower temperatures) brought further benefits in the East. The results indicate that breeding for improved reproductive frost tolerance should remain a priority for the Australian wheat industry, despite warming climates.
Resumo:
Radiant frost is a significant production constraint to wheat (Triticum aestivum) and barley (Hordeum vulgare), particularly in regions where spring-habit cereals are grown through winter, maturing in spring. However, damage to winter-habit cereals in reproductive stages is also reported. Crops are particularly susceptible to frost once awns or spikes emerge from the protection of the flag leaf sheath. Post-head-emergence frost (PHEF) is a problem distinct from other cold-mediated production constraints. To date, useful increased PHEF resistance in cereals has not been identified. Given the renewed interest in reproductive frost damage in cereals, it is timely to review the problem. Here we update the extent and impacts of PHEF and document current management options to combat this challenge. We clarify terminology useful for discussing PHEF in relation to chilling and other freezing stresses. We discuss problems characterizing radiant frost, the environmental conditions leading to PHEF damage, and the effects of frost at different growth stages. PHEF resistant cultivars would be highly desirable, to both reduce the incidence of direct frost damage and to allow the timing of crop maturity to be managed to maximize yield potential. A framework of potential adaptation mechanisms is outlined. Clarification of these critical issues will sharpen research focus, improving opportunities to identify genetic sources for improved PHEF resistance.
Resumo:
Radiant frost is a significant production constraint to wheat (Triticum aestivum) and barley (Hordeum vulgare), particularly in regions where spring-habit cereals are grown through winter, maturing in spring. However, damage to winter-habit cereals in reproductive stages is also reported. Crops are particularly susceptible to frost once awns or spikes emerge from the protection of the flag leaf sheath. Post-head-emergence frost (PHEF) is a problem distinct from other cold-mediated production constraints. To date, useful increased PHEF resistance in cereals has not been identified. Given the renewed interest in reproductive frost damage in cereals, it is timely to review the problem. Here we update the extent and impacts of PHEF and document current management options to combat this challenge. We clarify terminology useful for discussing PHEF in relation to chilling and other freezing stresses. We discuss problems characterizing radiant frost, the environmental conditions leading to PHEF damage, and the effects of frost at different growth stages. PHEF resistant cultivars would be highly desirable, to both reduce the incidence of direct frost damage and to allow the timing of crop maturity to be managed to maximize yield potential. A framework of potential adaptation mechanisms is outlined. Clarification of these critical issues will sharpen research focus, improving opportunities to identify genetic sources for improved PHEF resistance.
Resumo:
In areas of seasonal frost, frost susceptibility composed by frost heaving during the winter and thaw softening during the spring is one of the most dangerous phenomenon for transportation, road and railway infrastructure. Therefore, the need for frost protection layer becomes imperative. The purpose of frost protection layer is to prevent frost from penetrating down through the pavement and into the sub-soils. Frost susceptible soils under the road can be cause damages on the roads or other structures due to frost heave or reduced capacity characteristics thaw period. "Frost heave" is the term given to the upwards displacement of the ground surface caused by the formation of ice within soils or aggregates (Rempel et al., 2004). Nowadays in Scandinavia the most common material used in frost protection layer in the pavement structure of roads and in the ballast of the railway tracks are coarse-grain crushed rocks aggregates. Based on the capillary rise, the mechanics of frost heave phenomenon is based on the interaction between aggregates and water, as suggested by Konrad and Lemieux in 2005 that said that the fraction of material below the 0.063 mm sieve for coarse-grained soils must be controlled so as to reduce the sensitivity to frost heave. The study conducted in this thesis project is divided in two parts: - the analysis of the coarse grained aggregates used in frost protection layer in Norway; - the analysis of the frost heave phenomenon in the laboratory under known boundary conditions, through the use of the most widely used method, the frost heave test, in” closed system” (without access of water).
Resumo:
A reconstruction methodology utilizing such varied documents as diaries, agricultural journals, U.S. Weather Bureau killing frost records and instrumental records is discussed. A resultant 248-year frost record for eastern Massachusetts exhibits marked variations in the length of the growing season, that occur on a time scale of approximately 70 years. There is an apparent systematic long-term relationship between the timing of spring and fall killing frosts and the last 100 years of record reveals a decline in year-to-year variability.
Resumo:
https://digitalcommons.fiu.edu/frostcatalogs/1011/thumbnail.jpg
Resumo:
https://digitalcommons.fiu.edu/frostcatalogs/1012/thumbnail.jpg
Resumo:
https://digitalcommons.fiu.edu/frostcatalogs/1014/thumbnail.jpg
Resumo:
https://digitalcommons.fiu.edu/frostcatalogs/1031/thumbnail.jpg
Resumo:
https://digitalcommons.fiu.edu/frostcatalogs/1033/thumbnail.jpg
Resumo:
https://digitalcommons.fiu.edu/frostcatalogs/1034/thumbnail.jpg