1000 resultados para spliced leader gene
Resumo:
Trypanosoma rangeli infects several mammalian orders but has never confidently been described in Chiroptera, which are commonly parasitized by many trypanosome species. Here, we described trypanosomes from bats captured in Central Brazil identified as T rangeli,.T. dionisii, T cruzimarinkellei and T cruzi. Two isolates, Tra643 from Platyrrhinus lineatus and Tra1719 from Artibeus plamirostris were identified as T rangeli by morphological, biological and molecular methods, and confirmed by phylogenetic analyses. Analysis using SSU rDNA sequences clustered these bat trypanosomes together with T rangeli from other hosts, and separated them from other trypanosomes from bats. Genotyping based on length and sequence polymorphism of PCR-amplified intergenic spliced-leader gene sequences assigned Tra1719 to the lineage A whereas Tra643 was shown to be a new genotype and was assigned to the new lineage E. To our knowledge, these two isolates are the earliest T rangeli from bats and the first isolates from Central Brazil molecularly characterized. Rhodnius stali captured for this study was found infected by T rangeli and T cruzi. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Trypanosoma (Megatrypanum) theileri from cattle and trypanosomes of other artiodactyls form a clade of closely related species in analyses using ribosomal sequences. Analysis of polymorphic sequences of a larger number of trypanosomes from broader geographical origins is required to evaluate the Clustering of isolates as suggested by previous studies. Here, we determined the sequences of the spliced leader (SL) genes of 21 isolates from cattle and 2 from water buffalo from distant regions of Brazil. Analysis of SL gene repeats revealed that the 5S rRNA gene is inserted within the intergenic region. Phylogeographical patterns inferred using SL sequences showed at least 5 major genotypes of T. theileri distributed in 2 strongly divergent lineages. Lineage TthI comprises genotypes IA and IB from buffalo and cattle, respectively, from the Southeast and Central regions, whereas genotype IC is restricted to cattle from the Southern region. Lineage Tth II includes cattle genotypes IIA, which is restricted to the North and Northeast, and IIB, found in the Centre, West, North and Northeast. PCR-RFLP of SL genes revealed valuable markers for genotyping T. theileri. The results of this study emphasize the genetic complexity and corroborate the geographical structuring of T. theileri genotypes found in cattle.
Resumo:
Typical general transcription factors, such as TATA binding protein and TFII B, have not yet been identified in any member of the Trypanosomatidae family of parasitic protozoa. Interestingly, mRNA coding genes do not appear to have discrete transcriptional start sites, although in most cases they require an RNA polymerase that has the biochemical properties of eukaryotic RNA polymerase II. A discrete transcription initiation site may not be necessary for mRNA synthesis since the sequences upstream of each transcribed coding region are trimmed from the nascent transcript when a short m7G-capped RNA is added during mRNA maturation. This short 39 nt m7G-capped RNA, the spliced leader (SL) sequence, is expressed as an ∼100 nt long RNA from a set of reiterated, though independently transcribed, genes in the trypanosome genome. Punctuation of the 5′ end of mRNAs by a m7G cap-containing spliced leader is a developing theme in the lower eukaryotic world; organisms as diverse as Euglena and nematode worms, including Caenorhabditis elegans, utilize SL RNA in their mRNA maturation programs. Towards understanding the coordination of SL RNA and mRNA expression in trypanosomes, we have begun by characterizing SL RNA gene expression in the model trypanosome Leptomonas seymouri. Using a homologous in vitro transcription system, we demonstrate in this study that the SL RNA is transcribed by RNA polymerase II. During SL RNA transcription, accurate initiation is determined by an initiator element with a loose consensus of CYAC/AYR(+1). This element, as well as two additional basal promoter elements, is divergent in sequence from the basal transcription elements seen in other eukaryotic gene promoters. We show here that the in vitro transcription extract contains a binding activity that is specific for the initiator element and thus may participate in recruiting RNA polymerase II to the SL RNA gene promoter.
Resumo:
Although several stage-specific genes have been identified in Leishmania, the molecular mechanisms governing developmental gene regulation in this organism are still not well understood. We have previously reported an attenuation of virulence in Leishmania major and L braziliensis carrying extra-copies of the spliced leader RNA gene. Here, we surveyed the major differences in proteome and transcript expression profiles between the spliced leader RNA overexpressor and control lines using two-dimensional gel electrophoresis and differential display reverse transcription PCR, respectively. Thirty-nine genes related to stress response, cytoskeleton, proteolysis, cell cycle control and proliferation, energy generation, gene transcription, RNA processing and post-transcriptional regulation have abnormal patterns of expression in the spliced leader RNA overexpressor line. The evaluation of proteolytic pathways in the mutant revealed a selective increase of cysteine protease activity and an exacerbated ubiquitin-labeled protein population. Polysome profile analysis and measurement of cellular protein aggregates showed that protein translation in the spliced leader RNA overexpressor line is increased when compared to the control line. We found that L major promastigotes maintain homeostasis in culture when challenged with a metabolic imbalance generated by spliced leader RNA surplus through modulation of intracellular proteolysis. However, this might interfere with a fine-tuned gene expression control necessary for the amastigote multiplication in the mammalian host. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Schistosomiasis is a major neglected tropical disease caused by trematodes from the genus Schistosoma. Because schistosomes exhibit a complex life cycle and numerous mechanisms for regulating gene expression, it is believed that spliced leader (SL) trans-splicing could play an important role in the biology of these parasites. The purpose of this study was to investigate the function of trans-splicing in Schistosoma mansoni through analysis of genes that may be regulated by this mechanism and via silencing SL-containing transcripts through RNA interference. Here, we report our analysis of SL transcript-enriched cDNA libraries from different S. mansoni life stages. Our results show that the trans-splicing mechanism is apparently not associated with specific genes, subcellular localisations or life stages. In cross-species comparisons, even though the sets of genes that are subject to SL trans-splicing regulation appear to differ between organisms, several commonly shared orthologues were observed. Knockdown of trans-spliced transcripts in sporocysts resulted in a systemic reduction of the expression levels of all tested trans-spliced transcripts; however, the only phenotypic effect observed was diminished larval size. Further studies involving the findings from this work will provide new insights into the role of trans-splicing in the biology of S. mansoni and other organisms. All Expressed Sequence Tags generated in this study were submitted to dbEST as five different libraries. The accessions for each library and for the individual sequences are as follows: (i) adult worms of mixed sexes (LIBEST_027999: JZ139310 - JZ139779), (ii) female adult worms (LIBEST_028000: JZ139780 - JZ140379), (iii) male adult worms (LIBEST_028001: JZ140380 - JZ141002), (iv) eggs (LIBEST_028002: JZ141003 - JZ141497) and (v) schistosomula (LIBEST_028003: JZ141498 - JZ141974).
Resumo:
We have isolated a clone of Trypanosoma cruzi genimic DNA, lambda 3b2-5, which contains sequences that are reiterated in the genome. Northtern blot analysis showed that clone 3b2-5 hybridizes to 1,200-5,000 bases different mRNA species. The number of mRNAs species hybridized to clone 3b2-5 exceeds its coding capacity showing that this clone carries sequences that are common to several mRNAs species and conserved in the poly A(+) RNA. These sequences are not homologous to the T. cruzi spliced leader sequence, since clone 3b2-5 hybridize to a synthetic 20 nucleotice complementary to the spliced leader sequence. Clone 3b2-5 does not hybridize to DNA and RNA from several genera of Trypanosomatidae and other Trypanosoma species indicating that it carries T. cruzi species-specific sequences.
Resumo:
The addition of a capped mini-exon [spliced leader (SL)] through trans-splicing is essential for the maturation of RNA polymerase (pol) II-transcribed polycistronic pre-mRNAs in all members of the Trypanosomatidae family. This process is an inter-molecular splicing reaction that follows the same basic rules of cis-splicing reactions. In this study, we demonstrated that mini-exons were added to precursor ribosomal RNA (pre-rRNA) are transcribed by RNA pol I, including the 5' external transcribed spacer (ETS) region. Additionally, we detected the SL-5'ETS molecule using three distinct methods and located the acceptor site between two known 5'ETS rRNA processing sites (A' and A1) in four different trypanosomatids. Moreover, we detected a polyadenylated 5'ETS upstream of the trans-splicing acceptor site, which also occurs in pre-mRNA trans-splicing. After treatment with an indirect trans-splicing inhibitor (sinefungin), we observed SL-5'ETS decay. However, treatment with 5-fluorouracil (a precursor of RNA synthesis that inhibits the degradation of pre-rRNA) led to the accumulation of SL-5'ETS, suggesting that the molecule may play a role in rRNA degradation. The detection of trans-splicing in these molecules may indicate broad RNA-joining properties, regardless of the polymerase used for transcription.
Resumo:
A single polymerase chain reaction (PCR) reaction targeting the spliced-leader intergenic region of Trypanosoma cruzi I was standardised by amplifying a 231 bp fragment in domestic (TcIDOM) strains or clones and 450 and 550 bp fragments in sylvatic strains or clones. This reaction was validated using 44 blind coded samples and 184 non-coded T. cruzi I clones isolated from sylvatic triatomines and the correspondence between the amplified fragments and their domestic or sylvatic origin was determined. Six of the nine strains isolated from acute cases suspected of oral infection had the sylvatic T. cruzi I profile. These results confirmed that the sylvatic T. cruzi I genotype is linked to cases of oral Chagas disease in Colombia. We therefore propose the use of this novel PCR reaction in strains or clones previously characterised as T. cruziI to distinguish TcIDOMfrom sylvatic genotypes in studies of transmission dynamics, including the verification of population selection within hosts or detection of the frequency of mixed infections by both T. cruzi I genotypes in Colombia.
Resumo:
The addition of a capped mini-exon [spliced leader (SL)] through trans-splicing is essential for the maturation of RNA polymerase (pol) II-transcribed polycistronic pre-mRNAs in all members of the Trypanosomatidae family. This process is an inter-molecular splicing reaction that follows the same basic rules of cis-splicing reactions. In this study, we demonstrated that mini-exons were added to precursor ribosomal RNA (pre-rRNA) are transcribed by RNA pol I, including the 5' external transcribed spacer (ETS) region. Additionally, we detected the SL-5' ETS molecule using three distinct methods and located the acceptor site between two known 5' ETS rRNA processing sites (A' and A1) in four different trypanosomatids. Moreover, we detected a polyadenylated 5' ETS upstream of the trans-splicing acceptor site, which also occurs in pre-mRNA trans-splicing. After treatment with an indirect trans-splicing inhibitor (sinefungin), we observed SL-5' ETS decay. However, treatment with 5-fluorouracil (a precursor of RNA synthesis that inhibits the degradation of pre-rRNA) led to the accumulation of SL-5' ETS, suggesting that the molecule may play a role in rRNA degradation. The detection of trans-splicing in these molecules may indicate broad RNA-joining properties, regardless of the polymerase used for transcription.
Resumo:
Among trypanosomatids, the genus Phytomonas is the only one specifically adapted to infect plants. These hosts provide a particular habitat with a plentiful supply of carbohydrates. Phytomonas sp. lacks a cytochrome-mediated respiratory chain and Krebs cycle, and ATP production relies predominantly on glycolysis. We have characterised the complete gene encoding a putative pyruvate/indolepyruvate decarboxylase (PDC/IPDC) (548 amino acids) of P. serpens, that displays high amino acid sequence similarity with phytobacteria and Leishmania enzymes. No orthologous PDC/IPDC genes were found in Trypanosoma cruzi or T. brucei. Conservation of the PDC/IPDC gene sequence was verified in 14 Phytomonas isolates. A phylogenetic analysis shows that Phytomonas protein is robustly monophyletic with Leishmania spp. and C. fasciculata enzymes. In the trees this clade appears as a sister group of indolepyruvate decarboxylases of gamma-proteobacteria. This supports the proposition that a horizontal gene transfer event from a donor phytobacteria to a recipient ancestral trypanosome has occurred prior to the separation between Phytomonas. Leishmania and Crithidia. We have measured the PDC activity in P. serpens cell extracts. The enzyme has a Km value for pyruvate of 1.4 mM. The acquisition of a PDC, a key enzyme in alcoholic fermentation, explains earlier observations that ethanol is one of the major end-products of glucose catabolism under aerobic and anaerobic conditions. This represents an alternative and necessary route to reoxidise part of the NADH produced in the highly demanding glycolytic pathway and highlights the importance of this type of event in metabolic adaptation. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The role of spliced leader RNA (SL RNA) in trans-splicing in Caenorhabditis elegans has been studied through a combination of in vitro mutagenesis and in vivo complementation of rrs-1 mutant nematodes, which lack endogenous SL1 RNA. Three classes of mutant SL1 RNAs have been found—those that rescue the lethal phenotype at low concentration of transforming DNA, those that rescue at high but not low concentration, and those that do not rescue at all. These studies showed that some mutations in the otherwise highly conserved 22-nt spliced leader are tolerated for splicing and post-splicing events. A longer spliced leader also can be tolerated but only when present in high copy number. Changes in the first 16 nucleotides result in the appearance of no SL RNA, consistent with the in vitro studies by others showing that the SL1 RNA promoter partly resides within the spliced leader sequence.
Resumo:
A search of databases with the sequence from the 5′ untranslated region of a Hydra cDNA clone encoding a receptor protein-tyrosine kinase revealed that a number of Hydra cDNAs contain one of two different sequences at their 5′ ends. This finding suggested the possibility that mRNAs in Hydra receive leader sequences by trans-splicing. This hypothesis was confirmed by the finding that the leader sequences are transcribed as parts of small RNAs encoded by genes located in the 5S rRNA clusters of Hydra. The two spliced leader (SL) RNAs (SL-A and -B) contain splice donor dinucleotides at the predicted positions, and genes that receive SLs contain splice acceptor dinucleotides at the predicted positions. Both of the SL RNAs are bound by antibody against trimethylguanosine, suggesting that they contain a trimethylguanosine cap. The predicted secondary structures of the Hydra SL RNAs show significant differences from the structures predicted for the SLs of other organisms. Messenger RNAs have been identified that can receive either SL-A or -B, although the impact of the two different SLs on the function of the mRNA is unknown. The presence and features of SL addition in the phylum Cnidaria raise interesting questions regarding the evolution of this process.
Resumo:
Recent developments in multidimensional heteronuclear NMR spectroscopy and large-scale synthesis of uniformly 13C- and 15N-labeled oligonucleotides have greatly improved the prospects for determination of the solution structure of RNA. However, there are circumstances in which it may be advantageous to label only a segment of the entire RNA chain. For example, in a larger RNA molecule the structural question of interest may reside in a localized domain. Labeling only the corresponding nucleotides simplifies the spectrum and resonance assignments because one can filter proton spectra for coupling to 13C and 15N. Another example is in resolving alternative secondary structure models that are indistinguishable in imino proton connectivities. Here we report a general method for enzymatic synthesis of quantities of segmentally labeled RNA molecules required for NMR spectroscopy. We use the method to distinguish definitively two competing secondary structure models for the 5' half of Caenorhabditis elegans spliced leader RNA by comparison of the two-dimensional [15N] 1H heteronuclear multiple quantum correlation spectrum of the uniformly labeled sample with that of a segmentally labeled sample. The method requires relatively small samples; solutions in the 200-300 microM concentration range, with a total of 30 nmol or approximately 40 micrograms of RNA in approximately 150 microliters, give strong NMR signals in a short accumulation time. The method can be adapted to label an internal segment of a larger RNA chain for study of localized structural problems. This definitive approach provides an alternative to the more common enzymatic and chemical footprinting methods for determination of RNA secondary structure.
Resumo:
Although Trypanosoma theileri and allied trypanosomes are the most widespread trypanosomes in bovids little is known about proteolytic enzymes in these species. We have characterized genes encoding for cathepsin L-like (CATL) cysteine proteases from isolates of cattle, water buffalo and deer that largely diverged from homologues of other trypanosome species. Analysis of 78 CATL catalytic domain sequences from 22 T. theileri trypanosomes disclosed 6 genotypes tightly clustered together into the T. theileri clade. The CATL genes in these trypanosomes are organized in tandem arrays of similar to 1.7 kb located in 2 chromosomal bands of 600-720 kb. A diagnostic PCR assay targeting CATL sequences detected T. theileri of all genotypes from cattle, buffaloes and cervids and also from tabanid vectors. Expression of T. theileri cysteine proteases was demonstrated by proteolytic activity in gelatin gels and hydrolysis of Z-Phe-Arg-AMC substrate. Results from this work agree with previous data using ribosomal and spliced leader genes demonstrating that CATL gene sequences are useful for diagnosis, population genotyping and evolutionary studies of T. theileri trypanosomes. (c) 2010 Elsevier Ireland Ltd. All rights reserved.