944 resultados para spine segment stiffness


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. In vitro spine biomechanical testing has been central to many advances in understanding the physiology and pathology of the human spine. Owing to the difficulty in obtaining sufficient numbers of human samples to conduct these studies, animal spines have been accepted as a substitute model. However, it is difficult to compare results from different studies, as they use different preparation, testing and data collection methods. The aim of this study was to identify the effect of repeated cyclic loading on bovine spine segment stiffness. It also aimed to quantify the effect of multiple freeze-thaw sequences, as many tests would be difficult to complete in a single session [1-3]. Materials and Methods. Thoracic spines from 6-8 week old calves were used. Each spine was dissected and divided into motion segments including levels T4-T11 (n=28). These were divided into two equal groups. Each segment was potted in polymethylemethacrylate. An Instron Biaxial materials testing machine with a custom made jig was used for testing. The segments were tested in flexion/extension, lateral bending and axial rotation at 37 degrees C and 100% humidity, using moment control to a maximum plus/minus 1.75 Nm with a loading rate of 0.3 Nm per second. Group (A) were tested with continuous repeated cyclic loading for 500 cycles with data recorded at cycles 3, 5, 10, 25, 100, 200, 300, 400 and 500. Group (B) were tested with 10 load cycles after each of 5 freeze thaw sequences. Data was collected from the tenth load cycle after each sequence. Statistical analysis of the data was performed using paired samples t-tests, ANOVA and generalized estimating equations. Results. The data were confirmed as having a normal distribution. 1. There were significant reductions in mean stiffness in flexion/extension (-20%; P=0.001) and lateral bending (-17%; P=0.009) over the 500 load cycles. However, there was no statistically significant change in axial rotation (P=0.152) 2. There was no statistically significant difference between mean stiffness over the five freeze-thaw sequences in flexion/extension (p=0.879) and axial rotation (p=0.07). However, there was a significant reduction in stiffness in lateral bending (-26%; p=0.007) Conclusion. Biomechanical testing of immature bovine spine motion segments requires careful interpretation. The effect of the number of load cycles as well as the number of freeze-thaw cycles on the stiffness of the motion segments depends on the axis of main movement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction There is growing interest in the biomechanics of ‘fusionless’ implant constructs used for deformity correction in the thoracic spine. Intervertebral stapling is a leading method of fusionless corrective surgery. Although used for a number of years, there is limited evidence as to the effect these staples have on the stiffness of the functional spinal unit. Materials and Methods Thoracic spines from 6-8 week old calves were dissected and divided into motion segments including levels T4-T11 (n=14). Each segment was potted in polymethylemethacrylate. An Instron Biaxial materials testing machine with a custom made jig was used for testing. The segments were tested in flexion/extension, lateral bending and axial rotation at 37⁰C and 100% humidity, using moment control to a maximum 1.75 Nm with a loading rate of 0.3 Nm per second. This torque was found sufficient to achieve physiologically representative ranges of movement. The segments were initially tested uninstrumented with data collected from the tenth load cycle. Next a left anterolateral Shape Memory Alloy (SMA) staple was inserted (Medtronic Sofamor Danek, USA). Biomechanical testing was repeated as before with data collected from the tenth load cycle. Results In flexion/extension there was an insignificant drop in stiffness of 3% (p=0.478). In lateral bending there was a significant drop in stiffness of 21% (p<0.001). This was mainly in lateral bending away from the staple, where the stiffness reduced by 30% (p<0.001). This was in contrast to lateral bending towards the staple where it dropped by 12% which was still statistically significant (p=0.036). In axial rotation there was an overall near significant drop in stiffness of 11% (p=0.076). However, this was more towards the side of the staple measuring a decrease of 14% as opposed to 8% away from the staple. In both cases it was a statistically insignificant drop (p=0.134 and p=0.352 respectively). Conclusion Insertion of intervertebral SMA staples results in a significant reduction in motion segment stiffness in lateral bending especially in the direction away from the staple. The staple had less effect on axial rotation stiffness and minimal effect on flexion/extension stiffness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is growing interest in the biomechanics of ‘fusionless’ implant constructs used for deformity correction in the thoracic spine, however, there are questions over the comparability of in vitro biomechanical studies from different research groups due to the various methods used for specimen preparation, testing and data collection. The aim of this study was to identify the effect of two key factors on the stiffness of immature bovine thoracic spine motion segments: (i) repeated cyclic loading and (ii) multiple freeze-thaw cycles, to aid in the planning and interpretation of in vitro studies. Two groups of thoracic spine motion segments from 6-8 week old calves were tested in flexion/extension, right/left lateral bending, and right/left axial rotation under moment control. Group (A) were tested with continuous repeated cyclic loading for 500 cycles with data recorded at cycles 3, 5, 10, 25, 50, 100, 200, 300, 400 and 500. Group (B) were tested after each of five freeze-thaw sequences, with data collected from the 10th load cycle in each sequence. Group A: Flexion/extension stiffness reduced significantly over the 500 load cycles (-22%; P=0.001), but there was no significant change between the 5th and 200th load cycles. Lateral bending stiffness decreased significantly (-18%; P=0.009) over the 500 load cycles, but there was no significant change in axial rotation stiffness (P=0.137). Group B: There was no significant difference between mean stiffness over the five freeze-thaw sequences in flexion/extension (P=0.813) and a near significant reduction in mean stiffness in axial rotation (-6%; P=0.07). However, there was a statistically significant increase in stiffness in lateral bending (+30%; P=0.007). Comparison of in vitro testing results for immature thoracic bovine spine segments between studies can be performed with up to 200 load cycles without significant changes in stiffness. However, when testing protocols require greater than 200 cycles, or when repeated freeze-thaw cycles are involved, it is important to account for the effect of cumulative load and freeze-thaw cycles on spine segment stiffness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The definition of spinal instability is still controversial. For this reason, it is essential to better understand the difference in biomechanical behaviour between healthy and degenerated human spinal segments in vivo. A novel computer-assisted instrument was developed with the objective to characterize the biomechanical parameters of the spinal segment. Investigation of the viscoelastic properties as well as the dynamic spinal stiffness was performed during a minimally invasive procedure (microdiscectomy) on five patients. Measurements were performed intraoperatively and the protocol consisted of a dynamic part, where spinal stiffness was computed, and a static part, where force relaxation of the segment under constant elongation was studied. The repeatability of the measurement procedure was demonstrated with five replicated tests. The spinal segment tissues were found to have viscoelastic properties. Preliminary tests confirmed a decrease in stiffness after decompression surgery. Patients with non-relaxed muscles showed higher stiffness and relaxation rate compared to patients with relaxed muscles, which can be explained by the contraction and relaxation reflex of muscles under fast and then static elongation. The results show the usefulness of the biomechanical characterization of the human lumbar spinal segment to improve the understanding of the contribution of individual anatomical structures to spinal stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study Design. Biomechanical study of unembalmed human lumbar segments. Objective. To investigate the effects of tensioning the lumbar fasciae ( transversus abdominis [TrA]) aponeurosis) on segment stiffness during flexion and extension. Summary of Background Data. Animal and human studies suggest that TrA may influence intersegmental movement via tension in the middle and posterior layers of lumbar fasciae ( MLF, PLF). Methods. Compressive flexion and extension moments were applied to 17 lumbar segments from 9 unembalmed cadavers with 20 N lateral tension of the TrA aponeurosis during: 1) static tests: load was compared when fascial tension was applied during static compressive loads into flexion-extension; 2) cyclic loading tests: load, axial displacement, and stiffness were compared during repeated compressive loading cycles into flexion-extension. After testing, the PLF was incised to determine the tension transmitted by each layer. Results. At all segments and loads (< 200 N), fascial tension increased resistance to flexion loads by similar to 9.5 N. In 15 of 17, fascial tension decreased resistance to extension by similar to 6.6 N. Fascial tension during cyclic flexion loading decreased axial displacement by 26% at the onset of loading (0 - 2 N) and 2% at 450 N ( 13 of 17). During extension loading, fascial tension increased displacement at the onset of loading ( 10 of 17) by similar to 23% and slightly (1%) decreased displacement at 450 N. Segment stiffness was increased by 6 N/mm in flexion (44% at 25 N) and decreased by 2 N/mm (8% at 25 N) in extension. More than 85% of tension was transmitted through the MLF. Conclusions. Tension on the lumbar fasciae simulating moderate contraction of TrA affects segmental stiffness, particularly toward the neutral zone.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

INTRODUCTION The clinical tests currently used to assess spinal biomechanics preoperatively are unable to assess true mechanical spinal stiffness. They rely on spinal displacement without considering the force required to deform a patient's spine. We propose a preoperative method for noninvasively quantifying the three-dimensional patient-specific stiffness of the spines of adolescent idiopathic scoliosis patients. METHODS The technique combines a novel clinical test with numerical optimization of a finite element model of the patient's spine. RESULTS A pilot study conducted on five patients showed that the model was able to provide accurate 3D reconstruction of the spine's midline and predict the spine's stiffness for each patient in flexion, bending, and rotation. Statistically significant variation of spinal stiffness was observed between the patients. CONCLUSION This result confirms that spinal biomechanics is patient-specific, which should be taken into consideration to individualize surgical treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The registration of pre-operative volumetric datasets to intra- operative two-dimensional images provides an improved way of verifying patient position and medical instrument loca- tion. In applications from orthopedics to neurosurgery, it has a great value in maintaining up-to-date information about changes due to intervention. We propose a mutual information- based registration algorithm to establish the proper align- ment. For optimization purposes, we compare the perfor- mance of the non-gradient Powell method and two slightly di erent versions of a stochastic gradient ascent strategy: one using a sparsely sampled histogramming approach and the other Parzen windowing to carry out probability density approximation. Our main contribution lies in adopting the stochastic ap- proximation scheme successfully applied in 3D-3D registra- tion problems to the 2D-3D scenario, which obviates the need for the generation of full DRRs at each iteration of pose op- timization. This facilitates a considerable savings in compu- tation expense. We also introduce a new probability density estimator for image intensities via sparse histogramming, de- rive gradient estimates for the density measures required by the maximization procedure and introduce the framework for a multiresolution strategy to the problem. Registration results are presented on uoroscopy and CT datasets of a plastic pelvis and a real skull, and on a high-resolution CT- derived simulated dataset of a real skull, a plastic skull, a plastic pelvis and a plastic lumbar spine segment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RESUMEN Objetivos Determinar la prevalencia de sintomatología musculoesquelética en trabajadores en una empresa avícola de Cundinamarca en el año 2013. Metodología Se eligió un diseño observacional, descriptivo, transversal mediante un método de recolección de datos a través de una herramienta estandarizada el “Cuestionario Nórdico musculoesquelético”(1), se adicionaron datos sociodemográficos como edad, género, cargo laboral y antigüedad laboral. El análisis del presente estudio se realizó a través de herramienta informática estadística “EPIINFO versión 3.5.4”(2). Resultados Del total de la población estudiada en la empresa avícola de Cundinamarca que fue de 229 trabajadores, se excluyeron 65 trabajadores por llevar menos de un año de labor en la empresa; quedando 164 trabajadores de las que correspondieron al género femenino 36.0% (n=58) y del género masculino 64.0% (n=105). El promedio de edad fue de 38.1 ± 9.4 años con un mínimo de 18 años y un máximo de 56 años. La distribución de acuerdo a nivel educativo principalmente fueron bachilleres con el 48.8% (n=80) y primaria fueron 34.8% (n=57). La prevalencia de síntomas osteomusculares en los últimos 12 meses por segmentos corporales fue más frecuente en manos y muñecas con un 65.2%, seguido del segmento de columna lumbar con un 48.0%; por número de segmentos comprometidos se encontró una prevalencia de 4 o más segmentos del 52.2%. Conclusión La prevalencia global de sintomatología musculoesquelética de nuestro estudio aunque coincidente con la literatura, evidencia a nivel de segmentos diferencias importantes como en el de manos muñecas, donde la séptima encuesta nacional de condiciones de trabajo del Instituto Nacional de Higiene en el Trabajo de España (INHT) reporta el 10.8%(3). En nuestro estudio se encontró una mayor prevalencia de síntomas en 4 o más segmentos comprometidos, comparado con el estudio Prevalence of multisite musculoskeletal symptoms: a French cross-sectional working population-based study que reporta una prevalencia para 4 o más segmentos del 27.0% al 35.0%(12), lo que nos hace pensar en la coexistencia de múltiples factores de riesgos ergonómicos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human reactions to vibration have been extensively investigated in the past. Vibration, as well as whole-body vibration (WBV), has been commonly considered as an occupational hazard for its detrimental effects on human condition and comfort. Although long term exposure to vibrations may produce undesirable side-effects, a great part of the literature is dedicated to the positive effects of WBV when used as method for muscular stimulation and as an exercise intervention. Whole body vibration training (WBVT) aims to mechanically activate muscles by eliciting neuromuscular activity (muscle reflexes) via the use of vibrations delivered to the whole body. The most mentioned mechanism to explain the neuromuscular outcomes of vibration is the elicited neuromuscular activation. Local tendon vibrations induce activity of the muscle spindle Ia fibers, mediated by monosynaptic and polysynaptic pathways: a reflex muscle contraction known as the Tonic Vibration Reflex (TVR) arises in response to such vibratory stimulus. In WBVT mechanical vibrations, in a range from 10 to 80 Hz and peak to peak displacements from 1 to 10 mm, are usually transmitted to the patient body by the use of oscillating platforms. Vibrations are then transferred from the platform to a specific muscle group through the subject body. To customize WBV treatments, surface electromyography (SEMG) signals are often used to reveal the best stimulation frequency for each subject. Use of SEMG concise parameters, such as root mean square values of the recordings, is also a common practice; frequently a preliminary session can take place in order to discover the more appropriate stimulation frequency. Soft tissues act as wobbling masses vibrating in a damped manner in response to mechanical excitation; Muscle Tuning hypothesis suggest that neuromuscular system works to damp the soft tissue oscillation that occurs in response to vibrations; muscles alters their activity to dampen the vibrations, preventing any resonance phenomenon. Muscle response to vibration is however a complex phenomenon as it depends on different parameters, like muscle-tension, muscle or segment-stiffness, amplitude and frequency of the mechanical vibration. Additionally, while in the TVR study the applied vibratory stimulus and the muscle conditions are completely characterised (a known vibration source is applied directly to a stretched/shortened muscle or tendon), in WBV study only the stimulus applied to a distal part of the body is known. Moreover, mechanical response changes in relation to the posture. The transmissibility of vibratory stimulus along the body segment strongly depends on the position held by the subject. The aim of this work was the investigation on the effects that the use of vibrations, in particular the effects of whole body vibrations, may have on muscular activity. A new approach to discover the more appropriate stimulus frequency, by the use of accelerometers, was also explored. Different subjects, not affected by any known neurological or musculoskeletal disorders, were voluntarily involved in the study and gave their informed, written consent to participate. The device used to deliver vibration to the subjects was a vibrating platform. Vibrations impressed by the platform were exclusively vertical; platform displacement was sinusoidal with an intensity (peak-to-peak displacement) set to 1.2 mm and with a frequency ranging from 10 to 80 Hz. All the subjects familiarized with the device and the proper positioning. Two different posture were explored in this study: position 1 - hack squat; position 2 - subject standing on toes with heels raised. SEMG signals from the Rectus Femoris (RF), Vastus Lateralis (VL) and Vastus medialis (VM) were recorded. SEMG signals were amplified using a multi-channel, isolated biomedical signal amplifier The gain was set to 1000 V/V and a band pass filter (-3dB frequency 10 - 500 Hz) was applied; no notch filters were used to suppress line interference. Tiny and lightweight (less than 10 g) three-axial MEMS accelerometers (Freescale semiconductors) were used to measure accelerations of onto patient’s skin, at EMG electrodes level. Accelerations signals provided information related to individuals’ RF, Biceps Femoris (BF) and Gastrocnemius Lateralis (GL) muscle belly oscillation; they were pre-processed in order to exclude influence of gravity. As demonstrated by our results, vibrations generate peculiar, not negligible motion artifact on skin electrodes. Artifact amplitude is generally unpredictable; it appeared in all the quadriceps muscles analysed, but in different amounts. Artifact harmonics extend throughout the EMG spectrum, making classic high-pass filters ineffective; however, their contribution was easy to filter out from the raw EMG signal with a series of sharp notch filters centred at the vibration frequency and its superior harmonics (1.5 Hz wide). However, use of these simple filters prevents the revelation of EMG power potential variation in the mentioned filtered bands. Moreover our experience suggests that the possibility of reducing motion artefact, by using particular electrodes and by accurately preparing the subject’s skin, is not easily viable; even though some small improvements were obtained, it was not possible to substantially decrease the artifact. Anyway, getting rid of those artifacts lead to some true EMG signal loss. Nevertheless, our preliminary results suggest that the use of notch filters at vibration frequency and its harmonics is suitable for motion artifacts filtering. In RF SEMG recordings during vibratory stimulation only a little EMG power increment should be contained in the mentioned filtered bands due to synchronous electromyographic activity of the muscle. Moreover, it is better to remove the artifact that, in our experience, was found to be more than 40% of the total signal power. In summary, many variables have to be taken into account: in addition to amplitude, frequency and duration of vibration treatment, other fundamental variables were found to be subject anatomy, individual physiological condition and subject’s positioning on the platform. Studies on WBV treatments that include surface EMG analysis to asses muscular activity during vibratory stimulation should take into account the presence of motion artifacts. Appropriate filtering of artifacts, to reveal the actual effect on muscle contraction elicited by vibration stimulus, is mandatory. However as a result of our preliminary study, a simple multi-band notch filtering may help to reduce randomness of the results. Muscle tuning hypothesis seemed to be confirmed. Our results suggested that the effects of WBV are linked to the actual muscle motion (displacement). The greater was the muscle belly displacement the higher was found the muscle activity. The maximum muscle activity has been found in correspondence with the local mechanical resonance, suggesting a more effective stimulation at the specific system resonance frequency. Holding the hypothesis that muscle activation is proportional to muscle displacement, treatment optimization could be obtained by simply monitoring local acceleration (resonance). However, our study revealed some short term effects of vibratory stimulus; prolonged studies should be assembled in order to consider the long term effectiveness of these results. Since local stimulus depends on the kinematic chain involved, WBV muscle stimulation has to take into account the transmissibility of the stimulus along the body segment in order to ensure that vibratory stimulation effectively reaches the target muscle. Combination of local resonance and muscle response should also be further investigated to prevent hazards to individuals undergoing WBV treatments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction The importance of in vitro biomechanical testing in today’s understanding of spinal pathology and treatment modalities cannot be stressed enough. Different studies have used differing levels of dissection of their spinal segments for their testing protocols[1, 2]. The aim of this study was to assess the impact of removing the costovertebral joints and partial resection of the spinous process sequentially, on the stiffness of the immature thoracic bovine spinal segment. Materials and Methods Thoracic spines from 6-8 week old calves were used. Each spine was dissected and divided into motion segments with 5cm of attached rib on each side and full spinous processes including levels T4-T11 (n=28). They were potted in polymethylemethacrylate. An Instron Biaxial materials testing machine with a custom made jig was used for testing. The segments were tested in flexion/extension, lateral bending and axial rotation at 37⁰C and 100% humidity, using moment control to a maximum 1.75 Nm with a loading rate of 0.3 Nm per second. They were first tested intact for ten load cycles with data collected from the tenth cycle. Progressive dissection was performed by removing first the attached ribs, followed by the spinous process at its base. Biomechanical testing was carried out after each level of dissection using the same protocol. Statistical analysis of the data was performed using repeated measures ANOVA. Results In combined flexion/extension there was a significant reduction in stiffness of 16% (p=0.002). This was mainly after resection of the ribs (14%, p=0.024) and mainly occurred in flexion where stiffness reduced by 22% (p=0.021). In extension, stiffness dropped by 13% (p=0.133). However there was no further significant change in stiffness on resection of the spinous process (<1%) (p=1.00). In lateral bending there was a significant decrease in stiffness of 13% (p<0.001). This comprised a drop of 11% on resection of the ribs (p=0.009) and a further 8% on resection of the spinous process (p=0.014). There was no difference between left and right bending. In axial rotation there was no significant change in stiffness after each stage of dissection (p=0.253). There was no difference between left and right rotation. Conclusion The costovertebral joints play a significant role in providing stability to the bovine thoracic spine in both flexion/extension and lateral bending, whereas the spinous processes play a minor role. Both elements have little effect on axial rotation stability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The spine is a complex structure that provides motion in three directions: flexion and extension, lateral bending and axial rotation. So far, the investigation of the mechanical and kinematic behavior of the basic unit of the spine, a motion segment, is predominantly a domain of in vitro experiments on spinal loading simulators. Most existing approaches to measure spinal stiffness intraoperatively in an in vivo environment use a distractor. However, these concepts usually assume a planar loading and motion. The objective of our study was to develop and validate an apparatus, that allows to perform intraoperative in vivo measurements to determine both the applied force and the resulting motion in three dimensional space. The proposed setup combines force measurement with an instrumented distractor and motion tracking with an optoelectronic system. As the orientation of the applied force and the three dimensional motion is known, not only force-displacement, but also moment-angle relations could be determined. The validation was performed using three cadaveric lumbar ovine spines. The lateral bending stiffness of two motion segments per specimen was determined with the proposed concept and compared with the stiffness acquired on a spinal loading simulator which was considered to be gold standard. The mean values of the stiffness computed with the proposed concept were within a range of ±15% compared to data obtained with the spinal loading simulator under applied loads of less than 5 Nm.