902 resultados para spinal cord injury, central cord syndrome, cruciate paralysis, diagnostic criteria, upper extremity motor score, lower extremity motor score


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paralysis is a debilitating condition afflicting millions of people across the globe, and is particularly deleterious to quality of life when motor function of the legs is severely impaired or completely absent. Fortunately, spinal cord stimulation has shown great potential for improving motor function after spinal cord injury and other pathological conditions. Many animal studies have shown stimulation of the neural networks in the spinal cord can improve motor ability so dramatically that the animals can even stand and step after a complete spinal cord transaction.

This thesis presents work to successfully provide a chronically implantable device for rats that greatly enhances the ability to control the site of spinal cord stimulation. This is achieved through the use of a parylene-C based microelectrode array, which enables a density of stimulation sites unattainable with conventional wire electrodes. While many microelectrode devices have been proposed in the past, the spinal cord is a particularly challenging environment due to the bending and movement it undergoes in a live animal. The developed microelectrode array is the first to have been implanted in vivo while retaining functionality for over a month. In doing so, different neural pathways can be selectively activated to facilitate standing and stepping in spinalized rats using various electrode combinations, and important differences in responses are observed.

An engineering challenge for the usability of any high density electrode array is connecting the numerous electrodes to a stimulation source. This thesis develops several technologies to address this challenge, beginning with a fully passive implant that uses one wire per electrode to connect to an external stimulation source. The number of wires passing through the body and the skin proved to be a hazard for the health of the animal, so a multiplexed implant was devised in which active electronics reduce the number of wires. Finally, a fully wireless implant was developed. As these implants are tested in vivo, encapsulation is of critical importance to retain functionality in a chronic experiment, especially for the active implants, and it was achieved without the use of costly ceramic or metallic hermetic packaging. Active implants were built that retained functionality 8 weeks after implantation, and achieved stepping in spinalized rats after just 8-10 days, which is far sooner than wire-based electrical stimulation has achieved in prior work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the differentiation potential of precursor cells within the developing spinal cord of mice and have shown that spinal cord cells from embryonic day 10 specifically give rise to neurons when plated onto an astrocytic monolayer, Ast-1. These neurons had the morphology of motor neurons and > 83% expressed the motor neuron markers choline acetyltransferase, peripherin, calcitonin gene-related peptide, and L-14. By comparison, < 10% of the neurons arising on monolayers of other neural cell lines or 3T3 fibroblasts had motor neuron characteristics. Cells derived from dorsal, intermediate, and ventral regions of the spinal cord all behaved similarly and gave rise to motor neuron-like cells when plated onto Ast-1. By using cells that expressed the lacZ reporter gene, it was shown that > 93% of cells present on the Ast-1 monolayers were motor neuron-like. Time-lapse analysis revealed that the precursors on the Ast-1 monolayers gave rise to neurons either directly or following a single cell division. Together, these results indicate that precursors in the murine spinal cord can be induced to differentiate into the motor neuron phenotype by factors produced by Ast-1 cells, suggesting that a similar factor(s) produced by cells akin to Ast-1 may regulate motor neuron differentiation in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary trigger to periodic limb movement (PLM) during sleep is still unknown. Its association with the restless legs syndrome (RLS) is established in humans and was reported in spinal cord injury (SCI) patients classified by the American Spinal Injury Association (ASIA) as A. Its pathogenesis has not been completely unraveled, though recent advances might enhance our knowledge about those malfunctions. PLM association with central pattern generator (CPG) is one of the possible pathologic mechanisms involved. This article reviewed the advances in PLM and RLS genetics, the evolution of CPG functioning, and the neurotransmitters involved in CPG, PLM and RLS. We have proposed that SCI might be a trigger to develop PLM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spinal cord injury often results in permanent functional impairment. Neural stem cells present in the adult spinal cord can be expanded in vitro and improve recovery when transplanted to the injured spinal cord, demonstrating the presence of cells that can promote regeneration but that normally fail to do so efficiently. Using genetic fate mapping, we show that close to all in vitro neural stem cell potential in the adult spinal cord resides within the population of ependymal cells lining the central canal. These cells are recruited by spinal cord injury and produce not only scar-forming glial cells, but also, to a lesser degree, oligodendrocytes. Modulating the fate of ependymal progeny after spinal cord injury may offer an alternative to cell transplantation for cell replacement therapies in spinal cord injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les lésions de la moelle épinière ont un impact significatif sur la qualité de la vie car elles peuvent induire des déficits moteurs (paralysie) et sensoriels. Ces déficits évoluent dans le temps à mesure que le système nerveux central se réorganise, en impliquant des mécanismes physiologiques et neurochimiques encore mal connus. L'ampleur de ces déficits ainsi que le processus de réhabilitation dépendent fortement des voies anatomiques qui ont été altérées dans la moelle épinière. Il est donc crucial de pouvoir attester l'intégrité de la matière blanche après une lésion spinale et évaluer quantitativement l'état fonctionnel des neurones spinaux. Un grand intérêt de l'imagerie par résonance magnétique (IRM) est qu'elle permet d'imager de façon non invasive les propriétés fonctionnelles et anatomiques du système nerveux central. Le premier objectif de ce projet de thèse a été de développer l'IRM de diffusion afin d'évaluer l'intégrité des axones de la matière blanche après une lésion médullaire. Le deuxième objectif a été d'évaluer dans quelle mesure l'IRM fonctionnelle permet de mesurer l'activité des neurones de la moelle épinière. Bien que largement appliquées au cerveau, l'IRM de diffusion et l'IRM fonctionnelle de la moelle épinière sont plus problématiques. Les difficultés associées à l'IRM de la moelle épinière relèvent de sa fine géométrie (environ 1 cm de diamètre chez l'humain), de la présence de mouvements d'origine physiologique (cardiaques et respiratoires) et de la présence d'artefacts de susceptibilité magnétique induits par les inhomogénéités de champ, notamment au niveau des disques intervertébraux et des poumons. L'objectif principal de cette thèse a donc été de développer des méthodes permettant de contourner ces difficultés. Ce développement a notamment reposé sur l'optimisation des paramètres d'acquisition d'images anatomiques, d'images pondérées en diffusion et de données fonctionnelles chez le chat et chez l'humain sur un IRM à 3 Tesla. En outre, diverses stratégies ont été étudiées afin de corriger les distorsions d'images induites par les artefacts de susceptibilité magnétique, et une étude a été menée sur la sensibilité et la spécificité de l'IRM fonctionnelle de la moelle épinière. Les résultats de ces études démontrent la faisabilité d'acquérir des images pondérées en diffusion de haute qualité, et d'évaluer l'intégrité de voies spinales spécifiques après lésion complète et partielle. De plus, l'activité des neurones spinaux a pu être détectée par IRM fonctionnelle chez des chats anesthésiés. Bien qu'encourageants, ces résultats mettent en lumière la nécessité de développer davantage ces nouvelles techniques. L'existence d'un outil de neuroimagerie fiable et robuste, capable de confirmer les paramètres cliniques, permettrait d'améliorer le diagnostic et le pronostic chez les patients atteints de lésions médullaires. Un des enjeux majeurs serait de suivre et de valider l'effet de diverses stratégies thérapeutiques. De telles outils représentent un espoir immense pour nombre de personnes souffrant de traumatismes et de maladies neurodégénératives telles que les lésions de la moelle épinière, les tumeurs spinales, la sclérose en plaques et la sclérose latérale amyotrophique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nursing practice is significantly influenced by the type and use of space in which nursing is practised. While investigating current patterns of service delivery for the management of pressure ulcers from the perspective of people with spinal cord injuries and their families, the space in which care was delivered was identified as a central determinant of care. Qualitative methods were used to investigate consumer perspectives among patients residing in both metropolitan and rural communities who had been hospitalized for the management of pressure ulcers. Issues related to the spatial practices of the hospital are discussed, demonstrating a link between well-being and the creation of an appropriate caring milieu. It is concluded that service could be improved markedly if health-care professionals placed more consideration on the impact of space on their service delivery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chondroitin sulfate proteoglycans (CSPGs) aggrecan, versican, and brevican are large aggregating extracellular matrix molecules that inhibit axonal growth of the mature central nervous system (CNS). ADAMTS proteoglycanases, including ADAMTS4 and ADAMTS5, degrade CSPGs, representing potential targets for ameliorating axonal growth-inhibition by CSPG accumulation after CNS injury. We investigated the proteolysis of CSPGs in mice homozygous for Adamts4 or Adamts5 null alleles after spinal cord injury (SCI). ADAMTS-derived 50-60 kDa aggrecan and 50 kDa brevican fragments were observed in Adamts4-/-, Adamts5-/-, and wt mice but not in the sham-operated group. By contrast Adamts4-/- and Adamts5-/- mice were both protected from versican proteolysis with an ADAMTS-generated 70 kDa versican fragment predominately observed in WT mice. ADAMTS1, ADAMTS9, and ADAMTS15 were detected by Western blot in Adamts4-/- mice' spinal cords after SCI. Immunohistochemistry showed astrocyte accumulation at the injury site. These data indicate that aggrecan and brevican proteolysis is compensated in Adamts4-/- or Adamts5-/- mice by ADAMTS proteoglycanase family members but a threshold of versican proteolysis is sensitive to the loss of a single ADAMTS proteoglycanase during SCI. We show robust ADAMTS activity after SCI and exemplify the requirement for collective proteolysis for effective CSPG clearance during SCI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study reviews the literature concerning possible therapeutic approaches for spinal cord injury. Spinal cord injury is a disabling and irreversible condition that has high economic and social costs. There are both primary and secondary mechanisms of damage to the spinal cord. The primary lesion is the mechanical injury itself. The secondary lesion results from one or more biochemical and cellular processes that are triggered by the primary lesion. The frustration of health professionals in treating a severe spinal cord injury was described in 1700 BC in an Egyptian surgical papyrus that was translated by Edwin Smith; the papyrus reported spinal fractures as a ''disease that should not be treated.'' Over the last biological or pharmacological treatment method. Science is unraveling the mechanisms of cell protection and neuroregeneration, but clinically, we only provide supportive care for patients with spinal cord injuries. By combining these treatments, researchers attempt to enhance the functional recovery of patients with spinal cord injuries. Advances in the last decade have allowed us to encourage the development of experimental studies in the field of spinal cord regeneration. The combination of several therapeutic strategies should, at minimum, allow for partial functional recoveries for these patients, which could improve their quality of life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spinal cord injury (SCI) results not only in paralysis; but it is also associated with a range of autonomic dysregulation that can interfere with cardiovascular, bladder, bowel, temperature, and sexual function. The entity of the autonomic dysfunction is related to the level and severity of injury to descending autonomic (sympathetic) pathways. For many years there was limited awareness of these issues and the attention given to them by the scientific and medical community was scarce. Yet, even if a new system to document the impact of SCI on autonomic function has recently been proposed, the current standard of assessment of SCI (American Spinal Injury Association (ASIA) examination) evaluates motor and sensory pathways, but not severity of injury to autonomic pathways. Beside the severe impact on quality of life, autonomic dysfunction in persons with SCI is associated with increased risk of cardiovascular disease and mortality. Therefore, obtaining information regarding autonomic function in persons with SCI is pivotal and clinical examinations and laboratory evaluations to detect the presence of autonomic dysfunction and quantitate its severity are mandatory. Furthermore, previous studies demonstrated that there is an intimate relationship between the autonomic nervous system and sleep from anatomical, physiological, and neurochemical points of view. Although, even if previous epidemiological studies demonstrated that sleep problems are common in spinal cord injury (SCI), so far only limited polysomnographic (PSG) data are available. Finally, until now, circadian and state dependent autonomic regulation of blood pressure (BP), heart rate (HR) and body core temperature (BcT) were never assessed in SCI patients. Aim of the current study was to establish the association between the autonomic control of the cardiovascular function and thermoregulation, sleep parameters and increased cardiovascular risk in SCI patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Current knowledge of long-term outcome in patients with acute spinal cord ischemia syndrome (ASCIS) is based on few studies with small sample sizes and <2 years' follow-up. Therefore, we analyzed clinical features and outcome of all types of ASCIS to define predictors of recovery. METHODS: From January 1990 through October 2002, 57 patients with ASCIS were admitted to our center. Follow-up data were available for 54. Neurological syndrome and initial degree of impairment were defined according to American Spinal Injury Association (ASIA)/International Medical Society of Paraplegia criteria. Functional outcome was assessed by walking ability and bladder control. RESULTS: Mean age was 59.4 years; 29 were women; and mean follow-up was 4.5 years. The origin was atherosclerosis in 33.3%, aortic pathology in 15.8%, degenerative spine disease in 15.8%, cardiac embolism in 3.5%, systemic hypotension in 1.8%, epidural anesthesia in 1.8%, and cryptogenic in 28%. The initial motor deficit was severe in 30% (ASIA grades A and B), moderate in 28% (ASIA C), and mild in 42% (ASIA D). At follow-up, 41% had regained full walking ability, 30% were able to walk with aids, 20% were wheelchair bound, and 9% had died. Severe initial impairment (ASIA A and B) and female sex were independent predictors of unfavorable outcome (P=0.012 and P=0.043). CONCLUSIONS: Considering a broad spectrum of clinical presentations and origins, the outcome in our study was more favorable than in previous studies reporting on ASCIS subgroups with more severe initial deficits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spinal cord injury (SCI) is a devastating condition that affects people in the prime of their lives. A myriad of vascular events occur after SCI, each of which contributes to the evolving pathology. The primary trauma causes mechanical damage to blood vessels, resulting in hemorrhage. The blood-spinal cord barrier (BSCB), a neurovascular unit that limits passage of most agents from systemic circulation to the central nervous system, breaks down, resulting in inflammation, scar formation, and other sequelae. Protracted BSCB disruption may exacerbate cellular injury and hinder neurobehavioral recovery in SCI. In these studies, angiopoietin-1 (Ang1), an agent known to reduce vascular permeability, was hypothesized to attenuate the severity of secondary injuries of SCI. Using longitudinal magnetic resonance imaging (MRI) studies (dynamic contrast-enhanced [DCE]-MRI for quantification of BSCB permeability, highresolution anatomical MRI for calculation of lesion size, and diffusion tensor imaging for assessment of axonal integrity), the acute, subacute, and chronic effects of Ang1 administration after SCI were evaluated. Neurobehavioral assessments were also performed. These non-invasive techniques have applicability to the monitoring of therapies in patients with SCI. In the acute phase of injury, Ang1 was found to reduce BSCB permeability and improve neuromotor recovery. Dynamic contrast-enhanced MRI revealed a persistent compromise of the BSCB up to two months post-injury. In the subacute phase of injury, Ang1’s effect on reducing BSCB permeability was maintained and it was found to transiently reduce axonal integrity. The SCI lesion burden was assessed with an objective method that compared favorably with segmentations from human raters. In the chronic phase of injury, Ang1 resulted in maintained reduction in BSCB permeability, a decrease in lesion size, and improved axonal integrity. Finally, longitudinal correlations among data from the MRI modalities and neurobehavioral assays were evaluated. Locomotor recovery was negatively correlated with lesion size in the Ang1 cohort and positively correlated with diffusion measures in the vehicle cohort. In summary, the results demonstrate a possible role for Ang1 in mitigating the secondary pathologies of SCI during the acute and chronic phases of injury.