2 resultados para spherosiloxane
Resumo:
This work describes the synthesis of octa (hydridodimethylsiloxyl) octasilsesquioxane, (Q(8)M(8)(H)) and its thermolysis in pyridine media. The new compound called CPy was characterized by FTIR, NMR-MAS, XRD, MEV spectroscopies and TGA analyses. These results indicate that silsesquioxanes cages (octanion) are maintained after thermal treatment. A cleavage of vertex siloxy groups yielding a nanocomposite with polymeric nature is proposed. Its structure and morphology allows the adsorption/inclusion of electrochemical mediator, toluidine blue O. The square wave voltammetry analysis of resulting composite (CPyTBO) exhibits two redox couple with a formal potential (E-0') 0.1 V and 0.26 V to I and II redox couples respectively, (Britton-Robinson (BR) buffer pH 3, v = 10 Hz versus SCE) ascribed to a monomer and dimmer of the toluidine blue species. This paper opens the use of spherosiloxane derived materials a's host for small molecules in the electrochemical field. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Octakis(cyanopropyldimethylsiloxy)octasilsesquioxane was prepared and characterized by C-13, Si-29 NMR (MAS), SEM, FF-IR, XRD and thermogravimetric techniques. The four groups alpha, beta, gamma, kappa (to the terminal silicon atom), associated with an acrylonitrile, were clearly seen in the C-13 NMR (alpha-CH2 at 17.9; P-CH2 at 31.3; gamma-CH, at 50.4; K-C N at 59.0 ppm). The Si-29 NMR spectrum of the final product, exhibits only Q type silicon signal, ascribed to Q(4) (-118.0 ppm). The presence of acrylonittile substituted for octameric cube confers a relative change phase and thermal stability to the material. With regard to the applications for this new material, it was intended, in this case, to react with Na-2[Fe(CN)(5)NH3] by chemical substitution. This composite was incorporated into a carbon paste electrode and the electrochemical studies were performed by cyclic voltammetry. The cyclic voltammogram of the modified graphite paste electrode, showed one redox couples with formal potential (E-1/2(ox)) = 0.24 V versus SCE. (c) 2006 Elsevier B.V. All rights reserved.